Germination and initial growth of bell pepper and lettuce inoculated with rhizobia and molecular identification of the strains

Authors

  • Erika Lorena Blanco Laboratorio de Biotecnología y Química de Polímeros, Universidad Nacional Experimental del Táchira. Apdo. 5001. San Cristóbal, Venezuela.
  • Yulimar Castro Laboratorio de Fitobiotecnología, Fac. de Ciencias, Universidad de Los Andes. Apdo. 5101. Mérida, Venezuela.
  • Auxiliadora Olivo Laboratorio de Fitobiotecnología, Fac. de Ciencias, Universidad de Los Andes. Apdo. 5101. Mérida, Venezuela.
  • Roberto Skwierinski Laboratorio de Fitobiotecnología, Fac. de Ciencias, Universidad de Los Andes. Apdo. 5101. Mérida, Venezuela.
  • Félix Moronta Barrios Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC). Apdo. 1204. San Antonio de los Altos, estado Miranda, Venezuela.

Keywords:

Bioinoculants, Capsicum annuum, gen 16S, Lactuca sativa, PGPR

Abstract

The seeds of some vegetables of high consumption by the Venezuelan population have a low percentage and delay in germination. In this research we evaluated the effect of ten indigenous rhizobial isolates on the germination and growth of bell pepper (Capsicum annuum L.) and lettuce (Lactuca sativa L.) during seedling stage to produce more vigorous plants. One hundred seeds were planted/treatment in triplicate and inoculated with the bacterial cultures (1x108 cel∙mL-1) plus a non-inoculated control, recording the germination during 8 days. Fifteen seedlings were transplanted/treatment to propagation trays with an inert sterile substrate, reinoculated and maintained for 30-45 days, to evaluate the effect on growth. The results were analyzed by Anova and compared with the control. The isolates RmBorbollon and ME01 were the most efficient to promote germination (P≤0,05) in bell pepper. No effect was found for lettuce germination. The isolates ME01 and Med increased significantly (P≤0,05) most growth variables in bell pepper and just a few in lettuce, which suggests some specificity of action  between microorganisms and  plant species. The strains were identified as belonging to the genera Ochrobactrum, Bradyrhizobium and Pseudomonas. It is concluded that these isolates, at exerting their promoter effect, may constitute promising strains for the formulation of biofertilizers.

Downloads

Download data is not yet available.

References

1. Alcedo, Y. e I. Reyes. 2018. Microorganismos promotores de crecimiento en el biocontrol de Alternaria alternata en tomate (Solanum lycopersicum L.). Bioagro 30(1): 59-66.

2. Altschul, S., T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller y D. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.

3. Anzuay, M., M. Ruiz Ciancio, L. Ludueña, J. Angelini, G. Barros, N. Pastor y T. Tauriana. 2017. Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides. Microbiological Research 199: 98-109.

4. Blanco, E.L. 2014. Evaluación del potencial biofertilizante de microorganismos en dos variedades de lechuga (Lactuca sativa L.). Tesis. Decanato de Postgrado. Universidad Nacional Experimental del Táchira (UNET). San Cristóbal, Venezuela. 116 p.

5. Blanco, E.L., M. Marquina y Y. Castro. 2013. Respuestas a la aplicación de carbamatos en dos aislados rizobianos provenientes de Mucuchíes, Estado Mérida, Venezuela. Bioagro 25(2): 117-128.

6. Boiero L., D. Perrig, O. Masciarelli, C. Penna, F. Cassán y V. Luna. 2007. Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl. Microbiol. Biotechnol. 74: 874-880.

7. Cisneros, C., M. Sánchez de P. y J. Menjivar. 2016. Influencia de microorganismos solubilizadores de fósforo del suelo y su absorción por plántulas de café. Bioagro 28(2): 95-106.

8. Cuperus, F. 2016. An explorative case study on soil micronutrient availability in the province Groningen, The Netherlands. Tesis. University of Wageningen, The Netherlands. 105 p.

9. FAO (Food and Agriculture Organization of the United Nations). 2014. Panorama de la seguridad alimentaria y nutricional en América latina y el Caribe. http://www.fao.org/3/a-i4018s.pdf (consulta del 11/03/2018).

10. García-Fraile, P., L. Carro, M. Robledo, M. Ramírez-Bahena, J. Flores-Félix, M. Fernández et al. 2012. Rhizobium promotes non-legumes growth and quality in several production steps: Towards and biofertilization of edible raw vegetables healthy for humans. PLoS One 7(5): e38122.

11. He, F. 2011. E. coli Genomic DNA Extraction. Bio-protocol Bio101: e97.

12. Hall, T. 2005. Bioedit. http://www.mbio. ncsu.edu/bioedit/bioedit.html (consulta del 12/10/2016).

13. Kämpfer, P., S. Wohlgemuth y H. Scholz. 2014. The family Brucellaceae. In: Rosenberg et al. (eds.). The Prokaryotes Alphaproteo-bacteria and Betaproteobacteria. Springer-Verlag, Berlin. pp. 155-178.

14. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.

15. Laguerre G., M. Sarah, S. Nour, M. Valérie, J. Sanjuan, P. Drouin, y N. Amarger. 2001. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147: 981-993.

16. Marcondes de Souza, J., L. Carareto Alves, A. de Mello Varani y E. de Macedo Lemos. 2014. The Family Bradyrhizobiaceae. In: E. Rosenberg et al. (eds.). The Prokaryotes - Alphaproteobacteria and Betaproteobacteria, Springer-Verlag, Berlin. pp. 135-154.

17. Marquina, M., N. González y Y. Castro. 2011. Caracterización fenotípica y genotípica de doce rizobios aislados de diversas regiones geográficas de Venezuela. Biología Tropical. 59(3): 1017-1036.

18. Marquina, M., Y. Ramírez y Y. Castro. 2018. Efecto de bacterias rizosféricas en la germinación y crecimiento del pimentón Capsicum annuum L. var. Cacique gigante. Bioagro 30(1): 3-16.

19. Olmedo, C. 2003. Aspectos biotecnológicos de las interacciones microorganismos-planta. In: Albanesi, Anriquez, Luna, Kunst y Ledesma (eds.). Microbiología Agrícola. Un Aporte de la Investigación Argentina. Universidad Nacional de Santiago del Estero, Argentina. pp. 97-103.

20. Prescott, L., J. Harley y D. Klein. 2002. Micro-biology. McGraw-Hill.

21. Peña, H. e I. Reyes. 2007. Aislamiento y evaluación de bacterias fijadoras de nitrógeno y disolventes de fosfatos en la promoción del crecimiento de la lechuga (Lactuca sativa L.). Interciencia 32(8): 560-565.

22. Reyes, I., L. Bernier, R. Simard y H. Antoun. 1999. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiology Ecology 28: 281-290.

23. Reyes, I., A. Valery y Z. Valduz. 2006. Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soil of colonizer plants at abandoned rock phosphate mine. Plant Soil 287: 69-75.

24. Reyes, I. y A. Valery. 2007. Efecto de la fertilidad del suelo sobre la microbiota y la promoción del crecimiento del maíz (Zea mays L.) con Azotobacter spp. Bioagro 19(3): 117-126.

25. Reyes, I., L. Álvarez., H. El-Ayoubi y A. Valery. 2008. Selección y evaluación de rizobacterias promotoras del crecimiento en pimentón y maíz. Bioagro 20(1): 37-48.

26. Rosas, S. y N. Correa. 2003. Microorganismos que promueven el crecimiento y desarrollo vegetal (PGPR’s). In: Albanesi, Anriquez, Luna, Kunst y Ledesma (eds.). Microbiología Agrícola. Un Aporte de la Investigación Argentina. Universidad Nacional de Santiago del Estero, Argentina. pp. 83-86.

27. Saitou, N. y M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-25.

28. Soriano Bernilla, B. y A. González Varas. 2012. Efecto de la inoculación de Rhizobium etli sobre el crecimiento vegetal de páprika, Capsicum annuum var. Longum, y lechuga, Lactuca sativa. Rebiol 32(1): 31-41.

29. Tamura, K, G. Stecher, D. Peterson, A. Filipski y S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30: 2725-2729.

30. Taiz, L. y E. Zeiger. 2010. Plant Physiology. Sinauer. Sunderland, MA, USA.

31. Thompson, J., D. Higgins y T. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22): 4673-4680.

32. Tripura C., P. Sudhakar, M. Reddy, B. Sashidhar y A. Podile. 2007. Glucose dehydrogenase of a rhizobacterial strain of Enterobacter asburiae involved in mineral phosphate solubilization shares properties and sequence homology with other members of enterobacteriaceae. Indian J. Microbiol. 47: 126-131.

33. Valery, A. e I. Reyes. 2013. Evaluación de rizobacterias promotoras del crecimiento bajo diferentes esquemas de fertilización en el cultivo de maíz variedad Himeca-95. Rev. Colomb. Biotecnol. 15(2): 81-88.

34. Vazallo, S., L. Ramírez, L. Carranza, B. García y B. Bernilla. 2013. Efecto de la inoculación de Rhizobium etli y Trichoderma viride sobre el crecimiento aéreo y radicular de Capsicum annuum L. var. Longum. Rebiolest 1(1): 11-21.

35. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255: 571-586.

36. Vincent, J. 1975. Manual práctico de rizobiología. Editorial Hemisferio Sur. Buenos Aires. 74 p.

37. Weisburg, W., S. Barns, D. Pelletier y D. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173(2): 697-703.

38. Wang, T., E. Wood y N. Brewin. 1982. Growth regulators, Rhizobium and nodulation in peas. Indole-3-acetic acid from the culture medium of nodulating and non-nodulating strains of R. leguminosarum. Planta 155: 343-349.

39. Wang, T., J. Romero-Martínez e I. López-Lara. 2001. Rhizobium y su Destacada Simbiosis con Plantas. In: E. Martínez-Romero y J. Martínez-Romero (eds.). Microbios. Centro de Investigaciones sobre Fijación de Nitrógeno. Universidad Nacional Autónoma de México. México. Cap. 8.

40. Xiao H., L. Zhuo, C. Yu, Z. Jun, G. Ying y Y. Yu. 2010. Isolation and identification of a phosphate-solubilizing bacterium Pantoea stewartii subsp. stewartii g6, and effects of temperature, salinity, and pH on its growth under indoor culture conditions. Aquacult Int. 18: 1079-1091.

Published

2020-05-01

How to Cite

Blanco, E. L., Castro, Y., Olivo, A., Skwierinski, R., & Moronta Barrios, F. (2020). Germination and initial growth of bell pepper and lettuce inoculated with rhizobia and molecular identification of the strains. Bioagro, 30(3), 207-218. Retrieved from https://revistas.uclave.org/index.php/bioagro/article/view/2719