Estabilidad de rendimiento de genotipos de canola (Brassica napus L.) a multi-ambientes usando el análisis biplot GGE

Autores/as

  • Mehmet Sincik Department of Field Crops, Faculty of Agriculture, Uludag University, Bursa, Turkey.
  • Abdurrahim T. Goksoy Department of Field Crops, Faculty of Agriculture, Uludag University, Bursa, Turkey.
  • Emre Senyigit Vocational School of Mustafa Kemalpasa, Uludag University, Bursa, Turkey
  • Yahya Ulusoy Vocational School of Technical Science, Uludag University, Bursa, Turkey.
  • Mustafa Acar Black Sea Agricultural Research Institude, Samsun, Turkey.
  • Sahin Gizlenci Black Sea Agricultural Research Institude, Samsun, Turkey.
  • Gulhan Atagun Black Sea Agricultural Research Institude, Samsun, Turkey.
  • Sami Suzer Trakya Agricultural Research Institude, Edirne, Turkey.

DOI:

https://doi.org/10.51372/bioagro332.4

Resumen

he GxE interaction (GEI) provides essential information for selecting and recommending cultivars in multi-environment trials. This study aimed to evaluate genotype (G) and environment (E) main effects and GxE interaction of 15 canola genotypes (10 canola lines and 5 check varieties) over 8 environments and to examine the existence of different mega environments. Canola yield performances were evaluated during 2015/16 and 2016/17 production season in three different locations (Southern Marmara, Thrace side of Marmara, and Black Sea regions) of Turkey. The trial in each location was arranged in a randomized complete block design with four replications. The seed yield data were analyzed using GGE biplot and the yield components data were analyzed using ANOVA. The agronomical traits revealed that environments, genotypes, and GEI were significant at 1 % probability for all of the characters. The variance analysis exhibited that genotypes, environments, and GEI explained 21.6, 21.7, and 25.7 % of the total sum of squares for seed yield, respectively. The GGE biplot analysis showed that the first and second principal components explained 57.3 and 18.3 % of the total variation in the data matrix, respectively. GGE biplot analysis showed that the polygon view of a biplot is an excellent way to visualize the interactions between genotypes and environments.

Descargas

La descarga de datos todavía no está disponible.

Citas

Atnaf, M., S. Kidane, S. Abadi, and Z. Fisha. 2013. GGE biplots to analyze soybean multi-environment yield trial data in north Western Ethiopia. J. Plant Breed. Crop Sci. 5 (12): 245-254.

Marjanović-Jeromela, A., R. Marinković, J. Atlagić, D. Saftić-Panković, D. Miladinović, P. Mitrović, and V. Miklič. 2008. Achievements in canola (Brassica napus L.) breeding at Institute of field and vegetable crops (In Serbian). Zbornik Radova Instituta za Ratarstvo i Povrtarstvo, Novi Sad 45(1): 131-143.

Miah, A., R. Golam, A.K. Mian, and M. Rohman 2015. Evaluation of canola lines for seed yield stability. International Journal of Agronomy and Agricultural Research 7(6): 12-19.

Moghaddam, M.J., and S.S. Pourdad. 2011. Genotype x environment interactions and simultaneous selection for high oil yield and stability in rainfed warm areas canola (Brassica napus L.) from Iran. Euphytica 180: 321–335.

Nowosad, K., A. Liersch, W. Popławska, and J. Bocianowski. 2016. Genotype by environment interaction for seed yield in canola (Brassica napus L.) using additive main effects and multiplicative interaction model. Euphytica 208: 187–194.

Otoo, E. and R. Asiedu. 2006. Cultivar evaluation and mega-environment investigation of Dioscorea cayenensis cultivars in Ghana based on the GGE biplot analysis. Journal of Food, Agriculture and Environment 4(3-4): 162-166.

Rahnejat, S.S. and E. Farshadfar. 2015. Evaluation of Phenotypic Stability in Canola (Brassica napus L.) Using GGE-biplot. Int. J. Biosci. 6(1): 350-356.

Sabaghnia, N., H. Dehghani, B. Alizadeh, and M. Moghaddam. 2011. Yield analysis of canola (Brassica napus L.) under water-stress conditions using GGE biplot methodology. Journal of Crop Improvement 25: 26–45.

Shojaei, S.H., K. Mostafavi, M. Khodarahmi and M. Zabet. 2011. Response study of canola (Brassica napus L.) cultivars to multi-environments using genotype plus genotype- environment interaction (GGE) biplot method in Iran. African Journal of Biotechnology 10(53): 10877-10881.

Yan W. 2001. GGE biplot: A Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron J. 93: 1111-1118.

Yan W. 2002. Singular-value partitioning in biplot analysis of multi-environment trial data. Agron. J. 94: 990-996.

Yan, W., L.A. Hunt, Q.L. Sheng, and Z. Szlavnics. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 40: 597-605.

Yan, W. and L.A. Hunt. 2002. Biplot analysis of multi-environment trial data, In M. S. Kang, ed. Quantitative Genetics, Genomics and Plant Breeding. CAB International, Wallingford.15.Yan, W. and M.S. Kang. 2003. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists and Agronomists. 1st Edn., CRC Press, Boca Raton, FL., USA., Pages: 288.

Yan, W. and M.S. Kang. 2003. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists and Agronomists. 1st Edn., CRC Press, Boca Raton, FL., USA., Pages: 288.

Yan, W. and I. Rajcan. 2002. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Sci. 42: 11-20.

Yan, W. and N.A. Tinker. 2005. An integrated biplot analysis system for displaying, interpreting, and exploring genotype × environment interaction. Crop Science 45: 1004-1016.

Yan, W. and N.A. Tinker. 2006. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 86: 623-645

Yan, W., M.S. Kang, B. Ma, S. Woods, and P.L. Cornelius. 2007. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 47: 643–655.

Yang, R.C., J. Crossa, P.L. Cornelius, and J. Burgueño. 2009. Biplot analysis of genotype × environment interaction: Proceed with caution. Crop Sci. 49: 1564-1576.

Zhang, H., J.D. Berger, and C. Herrmann. 2017. Yield stability and adaptability of canola (Brassica napus L.) in multiple environment trials. Euphytica 213: Article 15.

Publicado

2021-04-29

Cómo citar

Sincik, M., Goksoy, A. T., Senyigit, E., Ulusoy, Y., Acar, M., Gizlenci, S., Atagun, G., & Suzer, S. (2021). Estabilidad de rendimiento de genotipos de canola (Brassica napus L.) a multi-ambientes usando el análisis biplot GGE. Bioagro, 33(2), 105-114. https://doi.org/10.51372/bioagro332.4

Número

Sección

Artículos

Artículos más leídos del mismo autor/a