Enzymatic antagonism of Trichoderma spp., on hytophthora parasitica and Fusarium oxysporum in jamaica (Hibiscus sabdariffa L.)
DOI:
https://doi.org/10.51372/bioagro333.6Keywords:
Antibiosis, enzymatic activity, Hibiscus sabdariffa, Trichoderma asperellum, Trichoderma inhamatumAbstract
Mexico is the seventh largest producer in Jamaica and Guerrero agglomerates more than 70% of the national production. The crop presents important phytosanitary limitations, highlights the "black leg" associated with a complex of pathogens (Phytophthora parasitica and Fusarium oxysporum). Losses up to 100% are reported in areas without phytosanitary management. Due to the nature of the consumption of the final product, it is necessary to implement ecological strategies to manage the disease. The objective of the study was to quantify the chitinases and glucanases activity of Trichoderma spp. Isolates, and to evaluate their inhibitory effect in vitro on Phytophthora parasitica and Fusarium oxysporum. Strains Ta10, Ta11, Ta6 and Ta9 of T. asperellum and Ti14 of T. Inhamatum from soils cultivated with hibiscus and high incidence of P. parasitica and F. oxysporum in Guerrero were evaluated. The levels of chitinases and glucanases produced in all Trichoderma spp. were significant (p£0,05), it could be observed that Ta9 from T. asperellum showed the highest specific chitinase activity, in the case of Ti14 glucanases from T. inhamatum it obtained the highest levels. All the filtrates from the different isolates of Trichoderma spp. generated a substantial inhibition of mycelial growth of Fusarium oxysporum and Phytophthora parasitica. Consistently Ta9 of Trichoderma asperellum obtained inhibition percentages greater than 90% in both tests. A significant correlation was detected between the enzymatic activity and the inhibition of the growth of the Trichoderma spp isolates. on pathogens.
Downloads
References
Abo‐Elyousr, K.A., S.I. Abdel‐Hafez y I.R. Abdel‐Rahim. 2014. Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. Journal of Phytopathology 162(9): 567-574.
Aceves A., C.M., M.A.O. Sánchez, O.R. Domínguez y R.L. Gutiérrez. 2004. Producción y actividad antibiótica del 6 pentil-a-pirona de Trichoderma spp. sobre especies de Fusarium. Revista Mexicana de Fitopatología 22(1): 14-21.
Adams, D.J. 2004. Fungal cell wall chitinases and glucanases. Microbiology 150(7): 2029-2035.
Alarcón Cruz, N. y J.P. Legaria Solano. 2013. Caracterización morfológica de una muestra etnográfica de jamaica (Hibiscus sabdariffa L.). Revista Chapingo. Serie Horticultura 19(1): 85-98.
Baiyee B., C. Pornsuriya, S.I. Ito y A. Sunpapao. 2019. Trichoderma spirale T76-1 displays biocontrol activity against leaf spot on lettuce (Lactuca sativa L.) caused by Corynespora cassiicola or Curvularia aeria. Biological Control 129: 195-200.
Bara M., T.F., A.L. Lima y C.J. Ulhoa. 2003. Purification and characterization of an exo-β-1, 3-glucanase produced by Trichoderma asperellum. FEMS Microbiology Letters 219(1): 81-85.
Barnett L. H. y Hunter B. B. 2006. Illustrated Genera of Imperfect Fungi. Fourth Edition. The American Phytopathological Society. St. Paul, Minnesota, USA. 218p
Bell, D.K., H.D. Wells y C.R. Markham. 1982. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology 72(4): 379-382.
Bhale, U.N., P.M. Wagh y J.N. Rajkonda. 2013. Antagonistic confrontation of Trichoderma spp. against fruit rot pathogens on Sapodilla (Manilkara zapota L.). Journal of Yeast and Fungal Research 4(1): 5-11.
Bobadilla-Carrillo, G.I., M.G. Valdivia-Reynoso, M.L. Machuca-Sánchez, R. Balois-Morales y L. González-Torres. 2016. Factores precosecha, cosecha y poscosecha inherentes al cultivo de jamaica (Hibiscus sabdariffa L.). Revista Bio Ciencias 3(4): 256-268.
Booth, C. 1971. The Genus Fusarium CMI Kew. Sur. England.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2): 248-254.
Contreras-Cornejo, H.A., L. Macías-Rodríguez, E. del-Val y J. Larsen. 2016. ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology 92(4): fiw036.
El-Katatny, M., M. Gudelj, K.H. Robra, M. Elnaghy y G. Gübitz. 2001. Characterization of a chitinase and an endo-β-1, 3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Applied Microbiology and Biotechnology 56(1-2): 137-143.
FAOSTAT, Organización de las Naciones Unidas para la Alimentación y la Agricultura. 2019. http://faostat3.fao.org/browse/Q/*/E (consulta de Noviembre 28, 2020).
Gajera, H., R. Domadiya, S. Patel, M. Kapopara y B. Golakiya. 2013. Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system-a review. Curr. Res. Microbiol. Biotechnol. 1: 133-142.
Gallegly, M.E. y C. Hong. 2008. Phytophthora: Identifying species by morphology and DNA fingerprints. The American Phytopathological Society. St. Paul, Minnesota, USA. 158 p.
González, I., D. Infante, B. Martínez, Y. Arias, N. González, I. Miranda y B. Peteira. 2012. Induction of chitinases and glucanases in Trichoderma spp. strains intended for biological control. Biotecnología Aplicada 29(1): 12-16.
González I., D. Infante, B. Peteira, B. Martínez, Y. Arias, N. González y I. Miranda. 2010. Caracterización bioquímica de aislados de Trichoderma spp. promisorios como agentes de control biológico. I. Expresión de actividad quitinasa. Revista de Protección Vegetal 25(1): 58-63.
Guigón-López, C., V. Guerrero-Prieto, S. Lanzuise y M. Lorito. 2014. Enzyme activity of extracellular protein induced in Trichoderma asperellum and T. longibrachiatum by substrates based on Agaricus bisporus and Phymatotrichopsis omnivora. Fungal Biology 118(2): 211-221.
Harman, G.E. 2000. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Disease 84(4): 377-393.
Harman, G.E. 2011. Trichoderma-not just for biocontrol anymore. Phytoparasitica 39(2): 103-108.
Harman, G.E., C.K. Hayes, M. Lorito, R.M. Broadway, A.C. Peterbauer y A. Tronsmo. 1993. Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83(3): 313-318.
Hoyos-Carvajal, L., P. Chaparro, M. Abramsky, I. Chet y S. Orduz. 2008. Evaluación de aislamientos de Trichoderma spp. contra Rhizoctonia solani y Sclerotium rolfsii bajo condiciones in vitro y de invernadero. Agronomía Colombiana 26(3): 451-458.
Infante, D., B. Martínez, N. González y Y. Reyes. 2009. Mecanismos de acción de Trichoderma frente a hongos fitopatógenos. Revista de Protección Vegetal 24(1): 14-21.
Jeyaseelan, E.C., S. Tharmila y K. Niranjan. 2012. Antagonistic activity of Trichoderma spp. and Bacillus spp. against Pythium aphanidermatum isolated from tomato damping off. Archives of Applied Science Research 4(4): 1623-1627.
Kroon, L. P., H. Brouwer, A. W. de Cock y F. Govers. 2012. The genus Phytophthora Anno 2012. Phytopathology 102(4): 348-364.
Küçük, Ç. y M. Kivanç. 2005. In vitro antifungal activity of strains of Trichoderma harzianum. Turkish Journal of Biology 28(2-4): 111-115.
Larroque, M., E. Belmas, T. Martinez, S. Vergnes, N. Ladouce, C. Lafitte y B. Dumas. 2013. Pathogen-associated molecular pattern-triggered immunity and resistance to the root pathogen Phytophthora parasitica in Arabidopsis. Journal of Experimental Botany 64(12): 3615-3625.
Lowry, O.H., N.J. Rosebrough, A.L. Farr y R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265-275.
Marcello, C.M., A.S. Steindorff, S.P. da Silva, R. do Nascimento Silva, L.A.M. Bataus y C.J. Ulhoa. 2010. Expression analysis of the exo-β-1, 3-glucanase from the mycoparasitic fungus Trichoderma asperellum. Microbiological Research 165(1): 75-81.
Martínez, B., Y. Reyes, D. Infante, E. González, H. Baños y A. Cruz. 2008. Selección de aislamientos de Trichoderma spp. candidatos a biofungicidas para el control de Rhizoctonia sp. en arroz. Revista de Protección Vegetal 23(2): 118-125.
Meléndez-Monroy M., S. Aranda-Ocampo, G. Carrillo-Castañeda, J. Hernández-Morales y L. Soto-Rojas. 2016. Rizobacterias nativas en jamaica antagonistas a Phytophthora parasitica Dastur: aislamiento y caracterización. Revista Fitotecnia Mexicana 39(2): 151-158.
Michel-Aceves, A.C., M.A. Otero-Sánchez, L. Y. Solano-Pascacio, R. Ariza-Flores, A. Barrios-Ayala y A. Rebolledo-Martínez. 2009. Biocontrol in vitro con Trichoderma spp. de Fusarium subglutinans (Wollenweb. y Reinking) Nelson, Toussoun y Marasas y F. oxysporum Schlecht., agentes causales de la "Escoba de bruja" del mango (Mangifera indica L.). Revista Mexicana de Fitopatología 27(1): 18-26.
Michel-Aceves A. C., M.A. Otero-Sánchez, O. Rebolledo-Domínguez, R. Lezama-Gutiérrez y M.E. Ochoa-Moreno. 2005. Producción y efecto antagónico de quitinasas y glucanasas por Trichoderma spp, en la inhibición de Fusarium subglutinans y Fusarium oxysporum in vitro. Revista Chapingo Serie Horticultura, 11(2): 273-278.
Mohiddin, F.A., M.R. Khan, S.M. Khan y B.H. Bhat. 2010. Why Trichoderma is considered super hero (super fungus) against the evil parasites?. Plant Pathology Journal (Faisalabad) 9(3): 92-102.
Negrete, P.S. 2012. Análisis del modo de acción de la capacidad antagónica de Trichoderma asperellum sobre Colletotrichum gloeosporioides y Fusarium sp. Tumbaga, 2(7): 3.
Oros, G. y Z. Naár. 2017. Mycofungicide: Trichoderma based preparation for foliar applications. American Journal of Plant Sciences 8(2): 113-125.
Ortega-Acosta S. Á., J. Hernández-Morales, J. S. Sandoval-Islas, V. Ayala-Escobar, L. Soto-Rojas y A. Alejo-Jaimes. 2015. Distribución y frecuencia de organismos asociados a la enfermedad "pata prieta" de la jamaica (Hibiscus sabdariffa L.) en Guerrero, México. Revista Mexicana de Fitopatología 33(2): 173-194.
Osorio-Hernández E., J. Hernández-Morales, V. Conde-Martínez, A. C. Michel-Aceves, J. A. Lopez-Santillan y J. A. Torres-Castillo. 2016. In vitro activities of Trichoderma species against Phytophthora parasitica and Fusarium oxysporum. African Journal of Microbiology Research 10(15): 521-527.
Pittner, E., J. Marek, D. Bortuli, A. Knob, P.R. Da Silva, C.R. Gobatto, L. Alvarenga-Santos y C.D. Rios-Faria. 2019. Fungi with enzymatic action against fungal diseases and growth promoting in wheat. Bioagro 31(1): 55-66.
Quecine, M.C., W.L. Araujo, J. Marcon, C.S. Gai, J.L. Azevedo y A.A. Pizzirani‐Kleiner. 2008. Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Letters in Applied Microbiology 47(6): 486-491.
Ramada, M.H.S., F.Á C. Lopes, C.J. Ulhoa y R. do Nascimento Silva. 2010. Optimized microplate β-1, 3-glucanase assay system for Trichoderma spp. screening. Journal of Microbiological Methods 81(1): 6-10.
Ramot O., R. Cohen-Kupiec y I. Chet. 2000. Regulation of β-1, 3-glucanase by carbon starvation in the mycoparasite Trichoderma harzianum. Mycological Research 104(4): 415-420.
Reyes, Y., B. Martínez y D. Infante. 2008. Evaluación de la actividad antagónica de trece aislamientos de Trichoderma spp. sobre Rhizoctonia sp. Revista de Protección Vegetal 23(2): 112-117.
Romero-Cortes, T., P.A. López-Pérez, M. Ramírez-Lepe y J.A. Cuervo-Parra. 2016. Modelado cinético del micoparasitismo por Trichoderma harzianum contra Cladosporium cladosporioides aislado de frutos de cacao (Theobroma cacao). Chilean Journal of Agricultural & Animal Sciences 32(1): 32-45.
SAS Online doc copyright. (2010). SAS Institute Cary, NC, USA.
SIAP, Servicio de Información Agroalimentaria y Pesquera. 2020. Cierre de ciclo de producción agrícola. fuente: https://nube.siap.gob.mx/cierreagricola/ (consulta de Noviembre 23, 2020).
SMN. 2018. Servicio meteorológico nacional. Comisión Nacional del Agua. Normales climatológicas. Período (1981-2015). https://smn.conagua.gob.mx/es/ (consulta de diciembre, 2018).
Sunpapao, A., T. Chairin y S.I. Ito. 2018. The biocontrol by Streptomyces and Trichoderma of leaf spot disease caused by Curvularia oryzae in oil palm seedlings. Biological Control 123: 36-42.
Veena, G. A. y N. E. Reddy. 2014. Mycoparasitism of Trichoderma spp. on Rhizoctonia bataticola, the causal agent of dry root rots of chickpea. Int. J. of Plant, Animal and Environmental Sci. 4(1): 78-81.
Published
How to Cite
Issue
Section
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Rights of the author/s are from the year of publication
This work is under the license:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors not necesarily reflect the position of the publisher or UCLA. The total or partial reproduction of the texts published in this journal is authorized, as long as the complete source and the electronic address of this journal is cited. Authors have the right to use their articles for any purpose as long as it is done for non-profit purposes. Authors can publish the final version of their work on internet or any other medium, after it has been published in this journal.
Bioagro reserves the right to make textual modifications and technical adjustments to the figures of the manuscripts, in accordance with the style and specifications of the journal.