Phytotoxicity of cadmium on the germination and initial growth of Ecuadorian maize varieties

Authors

  • Henry Aguirre Instituto de Investigaciones de Recursos Naturales, Facultad de Ciencias Naturales, Universidad de Guayaquil. Guayaquil, C.P. 090150, Ecuador. https://orcid.org/0000-0002-2166-1786
  • Patricio Viteri Instituto de Investigaciones de Recursos Naturales, Facultad de Ciencias Naturales, Universidad de Guayaquil. Guayaquil, C.P. 090150, Ecuador. https://orcid.org/0000-0003-4181-0547
  • Pamela León Instituto de Investigaciones de Recursos Naturales, Facultad de Ciencias Naturales, Universidad de Guayaquil. Guayaquil, C.P. 090150, Ecuador. https://orcid.org/0000-0003-3253-0156
  • Yerimar Mayía Instituto de Investigaciones de Recursos Naturales, Facultad de Ciencias Naturales, Universidad de Guayaquil. Guayaquil, C.P. 090150, Ecuador. https://orcid.org/0000-0001-8632-5719
  • Patricio Cobos Instituto de Investigaciones de Recursos Naturales, Facultad de Ciencias Naturales, Universidad de Guayaquil. Guayaquil, C.P. 090150, Ecuador. https://orcid.org/0000-0003-4181-0547
  • Mariuxi Mero Instituto de Investigaciones de Recursos Naturales, Facultad de Ciencias Naturales, Universidad de Guayaquil. Guayaquil, C.P. 090150, Ecuador. https://orcid.org/0000-0003-4032-8492
  • Beatriz Pernía Instituto de Investigaciones de Recursos Naturales, Facultad de Ciencias Naturales, Universidad de Guayaquil. Guayaquil, C.P. 090150, Ecuador. https://orcid.org/0000-0002-2476-7279

DOI:

https://doi.org/10.51372/bioagro341.1

Keywords:

Heavy metals, tolerance, Zea mays

Abstract

Cadmium (Cd) is a pollutant that inhibits seed germination and decreases crop productivity. In Ecuador, contamination by this metal has been demonstrated in some agricultural soils. The objective of this research was to measure the effects of Cd on the germination and growth of the maize varieties INIAP-101, INIAP-122, INIAP-151, INIAP H-551, INIAP H-553, INIAP-180, and a native variety to the Manabí province in Ecuador (Autóctona). Seeds of the varieties were exposed to 0, 0.25, 0.5, 1, 2, 4, and 8 mg∙L-1 CdNO3 for 8 days and it was determined the germination start day and percentage, and length of radicle and hypocotyl. The effect of Cd was evaluated by calculating the tolerance and phytotoxicity indices. The germination percentage decreased by 37.5 in INIAP H-551, and only slightly in the Autónoma, at level of 1 mg∙L-1; the other varieties were not affected. According to the tolerance index, the most tolerant variety to Cd was the Autónoma, and the least tolerant were INIAP-101 and INIAP-122. The integral phytotoxicity index showed the toxicity of Cd in the following order: INIAP-101, INIAP H-551, INIAP-122, INIAP H-553, INIAP -180, INIAP-151, and the least affected was the Autónoma. Farmers are advised to analyze the cadmium concentration in the soil before cultivation and, depending on the degree of contamination, avoid growing the less tolerant varieties.

Downloads

Download data is not yet available.

References

Akinyemi, A. J., O. L. Faboya, I. Olayide, O. A. Faboya y T. Ijabadeniyi. 2017. Effect of Cadmium Stress on Non-enzymatic Antioxidant and Nitric Oxide Levels in Two Varieties of Maize (Zea mays). Bulletin of Environmental Contamination and Toxicology 98(6): 845-849.

Anjum, S. A., M. Tanveer, S. Hussain, M. Bao, L. Wang, I. Khan, E. Ullah, S. A. Tung, R. A. Samad y B. Shahzad. 2015. Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environmental Science and Pollution Research 22(21): 1-9.

Asati, A., M. Pichhode y K. Nikhil. 2016. Effect of Heavy Metals on Plants: An Overview. International Journal of Application or Innovation in Engineering & Management (IJAIEM) 5(3): 56-66.

Baker, A. J. M. y P. L. Walker. 1989. Physiological responses of plants to heavy metals and the quantification of tolerance and toxicity. Chemical Speciation & Bioavailability 1(1): 7-17.

Bautista, O. V, G. Fischer y J. F. Cárdenas. 2013. Cadmium and chromium effects on seed germination and root elongation in lettuce, spinach and Swiss chard. Agronomía Colombiana 31(1): 48-57.

Benavides, M., S. Gallego, y M. Tomaro. 2005. Cadmium toxicity in plants. Braz. J. Plant Physiol. 17(1): 21-34.

Chavez, E., Z. L. He, P. J. Stoffella, R. S. Mylavarapu, Y. C. Li, B. Moyano y V. C. Baligar. 2015. Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment 533: 205-214.

Clemens, S. 2006. Evolution and function of phytochelatin synthases. J. Plant Physiol. 163: 319-332.

Cokkizgin, A. y H. Cokkizgin. 2010. Effects of lead (PbCl2) stress on germination of lentil (Lens culinaris Medic.) lines. African Journal of Biotechnology 9(50): 8608-8612.

Condo-Franco, J. y B. Pernía 2018. Determinación de niveles de cadmio en granos de maíz (Zea mays L.) de la costa y sierra ecuatoriana. Revista Científica Ciencias Naturales y Ambientales. 12(2): 66-74.

De Meeûs, C., G. H. Eduljee y M. Hutton. 2002. Assessment and management of risks arising from exposure to cadmium in fertilisers. I. Science of the Total Environment 291(1-3): 167-187.

Drazkiewicz, M., A. Tukendorf y T. Baszyński. 2003. Age-dependent response of maize leaf segments to cadmium treatment: effect on chlorophyll fluorescence and phytochelatin accumulation. Journal of Plant Physiology 160(3): 247-254.

Escalante-Campos, S., A. Rodríguez-Dorantes, M.S. Vásquez-Murrieta, A.V. Rodríguez-Tovar, L. A. Guerrero-Zúñiga, N. O. Pérez, M. O. Franco-Hernández y A. Ponce-Mendoza. 2012. Evaluación del efecto de cadmio sobre la germinación y elongación radical de semillas bacterizadas de Axonopus affinis y Festuca rubra. Polibotanica 34: 205-221.

Félix, I., F. Mite, M. Carrillo y M. Pino. 1986. Avances de investigación del proyecto determinación de metales contaminantes en cultivos de exportación y su repercusión sobre la calidad de los mismos. VIII Congreso Ecuatoriano de la Ciencia del Suelo, Universidad Técnica de Manabí, Ecuador. 8 p. https://n9.cl/38klm (consulta de diciembre 23, 2021).

Flores, R. 2018. Efecadmioctos adversos de metales pesados en la agricultura de la cuenca baja del rio Huaura-provincia Huaura. Revista Ciencia y Tecnología 14(4): 119-131.

FOEFL (Swiss Federal Office of Environment, Forest and Landscape). 1998. Commentary on the Ordinance Relating to Pollutants in Soils, VBBo of July 1, 1998, Bern.

González-Mendoza, D. y O. Zapata-Pérez. 2008. Mecanismos de tolerancia a elementos potencialmente tóxicos en plantas. Boletin de La Sociedad Botanica de Mexico 82: 53-61.

Gouia, H., A. Suzuki, J. Brulfert y M. H. Ghorbal. 2003. Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. Journal of Plant Physiology 160(4): 367-376.

Jalal, A., D. O. Junior, J. Santos, G. Carlos, G. Guerra, V. Dias y R. Trindade. 2021. Hormesis in plants : Physiological and biochemical responses. Ecotoxicology and Environmental Safety 207: 111225.

Kabata-Pendias, A. y H. Pendias. 2001. Trace Elements in Soils and Plants. CRC Press. Boca raton, FL, USA

Kuo, S., B. Huang y R. Bembenek. 2007. Release of cadmium from a triple superphosphate and a phosphate rock in soil. Soil Science 172(4): 257-265.

Lagriffoul, A., B. Mocquot, M. Mench y J. Vangronsveld. 1998. Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants ( Zea mays L .). Plant and Soil 200: 241-250.

León, A. M., J.M. Palma, F.J. Corpas, M. Gómez, M.C. Romero, D. Chatterjee, R. Mateos, A. Luis y L. M. Sandalio. 2002. Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiology and Biochemistry 40(10): 813-820.

Ling, T., Q. Gao, H. Du, Q. Zhao y J. Ren. 2017. Growing, physiological responses and Cd uptake of Corn (Zea mays L.) under different Cd supply. Chemical Speciation and Bioavailability 29(1): 216-221.

Liu, Y., X. Wang, G. Zeng, D. Qu, J. Gu, M. Zhou y L. Chai. 2007. Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere 69(1): 99-107.

MAE. 2015. Acuerdo Ministerial 097A. Texto Unificado de Legislación Secundaria de Ecuador. Ministerio del Ambiente de Ecuador. Quito, Ecuador. https://n9.cl/p0koi (consulta de diciembre 23, 2021)

Mite, F., M. Carrillo y W. Durango. 2010. Avances del monitoreo de presencia de cadmio en almendras de cacao, suelo y agua en Ecuador. XII Congreso Ecuatoriano de la Ciencia del Suelo Provincia de los Tsáchilas. pp.17-19.

Pena, L., C. Matayoshi, A. Méndez, M. Arán, C. Moratto, J. Vázquez-Ramos y S. Gallego. 2020. Metabolic rearrangements in imbibed maize (Zea mays L.) embryos in the presence of oxidative stressors. Plant Physiology and Biochemistry 155: 560-569.

Pernía, B., A. De Sousa, R. Reyes y M. Castrillo. 2008. Biomarcadores de contaminación por cadmio en las plantas. Interciencia 33(2): 112-119.

Pernía, B., D. Rojas-Tortolero, L. Sena, A. De Sisto, Y. Inojosa y L. Naranjo. 2018. Phytotoxicity of PAH, extra-heavy crude oil and its fractions in Lactuca sativa: An integrated interpretation using a modified toxicity index. Revista Internacional de Contaminacion Ambiental 34(1): 79-91.

Pernía, B., M. Calabokis, K. Noris, J. Bubis, M. Guerra y M. Castrillo. 2019. Effects of cadmium in plants of Sphagneticola trilobata (L.) Pruski. Bioagro 31(2): 133-142.

Prieto Méndez, J., C. González, A. Román y F. Prieto García. 2009. Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical Agroecosystems 10(1): 29-44.

Ramírez, R., N. Subero, O. Sequera y J. Parra. 2016. Contenido de cadmio en arroz (Oryza sativa L.) y en suelos fertilizados con fosfatos por un periodo entre 5 y 51 años. Revista de La Facultad de Agronomía 41(1): 43-48.

Ríos, A., M. Machimba, A. Molina y M. Montenegro. 2007. Evaluación Agronómica de cuatro híbridos de maíz (Zea mays L.). La Granja 6: 30-33.

Rodríguez-Serrano, M., N. Martínez, M. Romero-Puertas, L.A. del Río y L.M. Sandalio. 2008. Toxicidad del cadmio en plantas. Ecosistemas 17(3): 139-146.

Sanità Di Toppi, L. y R. Gabbrielli. 1999. Response to cadmium in higher plants. Environmental and Experimental Botany 41: 105-130.

Sarwar, N., M. Imran, M.R. Shaheen, W. Ishaq, A. Kamran, A. Matloob, A. Rehim, S. Hussain. 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171: 710-721.

Vadillo, G., M. Suni y A. Cano. 2004. Viabilidad y germinación de semillas de Puya raimondii Harms (Bromeliaceae). Rev. Peru. Biol. 11(1): 71-78.

Vallejos-Torres, G., R. Ruíz-Valles, C. Chappa-Santa María, N. Gaona-Jiménez y C. Marín. 2022. Una alta diversidad de hongos micorrízicos arbusculares influye en la absorción de cadmio y crecimiento vegetativo del cacao. Bioagro 34(1): 75-84.

Vassilev, A. y I. Yordanov. 1997. Reductive analysis of factors limiting growth of cadmium-treated plants: a review. Bulgarian Journal of Plant Physiology 23(3-4): 114-133.

Wahid, A. y S. Khaliq. 2015. Architectural and biochemical changes in embryonic tissues of maize under cadmium toxicity. Plant Biology 17: 1005-1012.

Wang, M. y Q. Zhou. 2005. Single and joint toxicity of chlorimuron-ethyl, cadmium, and copper acting on wheat Triticum aestivum. Ecotoxicology and Environmental Safety 60: 169-175.

Wang, M., J. Zou, X. Duan, W. Jiang y D. Liu. 2007. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresource Technology 98(1): 82-88.

Weigel, H.J. y H.J. Jager. 1980. Subcellular distribution and chemical form of cadmium in bean plants Republic of Germany. 1979-1981. Plant Physiology 65 (3): 480-482.

Wilkins, B. 1978. The Measurement of Tolerance To Edaphic Factors. New Phytol. 80: 623-633.

Published

2021-12-29

How to Cite

Aguirre, H., Viteri, P., León, P., Mayía, Y., Cobos, P., Mero, M., & Pernía, B. (2021). Phytotoxicity of cadmium on the germination and initial growth of Ecuadorian maize varieties. Bioagro, 34(1), 3-14. https://doi.org/10.51372/bioagro341.1

Issue

Section

Artículos

Most read articles by the same author(s)