Evaluation of doses, application periods and residuality of paclobutrazol in tomato





Growth regulator, PBZ, residues degradation, Solanum lycopersicum


Paclobutrazol (PBZ) is the most widely used growth retardant in the chemical manipulation of the growth and development of horticultural plants. The effect of foliar applications of PBZ in different doses and application intervals on vegetative growth, yield, physicochemical quality and residuality in Saladette tomato fruits (Solanum lycopersicum L.) in a long greenhouse production cycle, was studied. The experiment was carried out in 2019 in Chiconcuac, Mexico State. A total of 13 treatments from the combination of three doses of PBZ (35, 50 and 65 mg·L-1) and four application intervals (30, 40, 50 and 60 days), plus an absolute control, were evaluated. The experiment used a randomized complete block design with four replications and six plants as experimental units. Variables were quantified as morphological, yield, physicochemical quality, and PBZ residues in the fruits. The results showed that applications of 50 mg·L-1 of PBZ every 40 days significantly increased (P≤0.05) fruit yield per plant; in contrast, it decreased plant height and leaf area, without affecting dry weight, fresh weight and firmness of fruit. PBZ residues were found in the epidermis of fruits that exceeded the maximum residue limits (MRL) recommended by the European Union and Japan; the degradation of the product over time did not reach 50 % even 14 days after application. Washing with simple water or detergent eliminated almost all residues adhered to the epidermis of the fruit, and there were no residues in the pulp.


Download data is not yet available.


AOAC (Association of Official Analytical Chemists International). 1990. AOAC: Official Methods of Analysis (Volume 1). Arlington, VA, USA. https://n9.cl/7qxw8 (consulta de noviembre 11, 2020).

AOAC (Association of Official Analytical Chemists International). 2007. AOAC Official Method 2007.01. https://n9.cl/a5t3bp (consulta de noviembre 9, 2020).

Batu, A. 2004. Determination of acceptable firmness and color values of tomatoes. Journal of Food Engineering 61(3): 471-475.

Berova, M. y Z. Zlatev. 2000. Physiological response and yield of paclobutrazol treated tomato plants (Lycopersicon esculentum Mill.). Plant Growth Regulation 30(2): 117-123.

Bhattacherjee, A.K. y V.K. Singh. 2015. Uptake of soil applied paclobutrazol in mango cv. Dashehari and its persistence in soil, leaves and fruits. Indian Journal of Plant Physiology 20(1): 39-43.

Campos de Melo, A.P., A. Seleguini, S. Da Rocha y V. Veloso. 2014. Peliculização de sementes de tomate associada ao paclobutrazol. Bragantia 73(2): 123-129.

Endegena, W. 2019. Yield and yield-related parameters of tomato (Lycopersicon esculentum Mill.) treated with paclobutrazol at different stages in North West Ethiopia. Journal of Horticulture and Plant Research 6: 37-46.

Ferreira, N., E. Vendruscolo, A. Seleguini, W. Dourado, C. Benett y A. Nascimento. 2017. Crescimento, produção e qualidade de frutos de tomateiro em cultivo adensado com uso de paclobutrazol. Revista Colombiana de Ciencias Hortícolas 11(1): 72-79.

França, C.F.M., W.S. Ribeiro, M.N.S. Santos, K.P.O.S. Petrucci, E.R. Rêgo y F.L. Finger. 2018. Growth and quality of potted ornamental peppers treated with paclobutrazol. Pesquisa Agropecuária Brasileira 53(3): 316-322.

Gollagi, S.G., B.G. Jasmitha y H.S. Sreekanth. 2019. A review on: paclobutrazol a boon for fruit crop production. Journal of Pharmacognosy and Phytochemistry 8(3): 2686-2691.

Kishore, K., H.S. Singh y R.M. Kurian. 2015. Paclobutrazol use in perennial fruit crops and its residual effects: a review. Indian Journal of Agricultural Sciences 85(7): 863-872.

Liu, H., T. Lin, J. Mao, H. Lu, D. Yang, J. Wang y Q. Li. 2015. Paclobutrazol residue determination in potato and soil using low temperature partition extraction and ultrahigh performance liquid chromatography tandem mass spectrometry. Journal of Analytical Methods in Chemistry 2015: 1-6.

Magnitskiy, S., C. Pasian, M. Bennett y J. Metzger. 2006. Effects of soaking cucumber and tomato seeds in paclobutrazol solutions on fruit weight, fruit size, and paclobutrazol level in fruits. Hortscience 41(6): 1446-1448.

Mog, B., P. Janani, M.G. Nayak, J.D. Adiga y R. Meena. 2019. Manipulation of vegetative growth and improvement of yield potential of cashew (Anacardium occidentale L.) by Paclobutrazol. Scientia Horticulturae 257: 108748.

Moreno-Pérez, E.C., F. Sánchez-del Castillo, M. Ruiz-Díaz y E. Contreras-Magaña. 2021. Effect of population densities and paclobutrazol applications on seedling quality and yield in tomato. Revista Chapingo Serie Horticultura 27(1): 5-17.

Osuna-García, J.A. 2001. Residualidad de paclobutrazol en frutos de mango (Mangifera indica L.) 'Tommy Atkins'. Revista Chapingo Serie Horticultura 7(2): 275-282.

Pavan, M. y A.P. Worth. 2008. Review of estimation models for biodegradation. QSAR & Combinatorial Science 27(1): 32-40.

Ramos-Fernández, J., O.J. Ayala-Garay, M. Pérez-Grajales, F. Sánchez-del Castillo y J.J. Magdaleno-Villar. 2021. Efecto del paclobutrazol sobre el crecimiento de la planta, rendimiento y calidad del fruto en tomate. Bioagro 33(1): 59-64.

Reddy, Y.T.N. y R.M. Kurian. 2008. Cumulative and residual effects of paclobutrazol on growth, yield and fruit quality of ’Alphonso’ mango. Journal of Horticultural Sciences 3(2): 119-122.

Resh, H. 2004. Cultivos Hidropónicos. 3a ed. Mundi-Prensa. Madrid.

Ribeiro, W.S., C.S. Carneiro, C.F.M. Franca, C.M.F. Pinto, P.C.C. Lima, F.L. Finger y F.B. Costa. 2019. Paclobutrazol application in potted ornamental pepper. Horticultura Brasileira 37(4): 464-468.

Sánchez-del Castillo, F., E.C. Moreno-Pérez, O.A. Pastor-Zarandona y E. Contreras-Magaña. 2017. Disposición de plantas de tomate en doseles en forma de escalera bajo dos densidades de población. Revista Fitotecnia Mexicana 40(3): 333-340.

Seleguini, A., E. Pradi-Vendruscolo, L. Cardoso-Campos y M.J. Faria Júnior. 2016. Efeito do paclobutrazol sobre o crescimento de plantas e produzção de tomate (Solanum lycopersicum L.) em ambiente protegido. Scientia Agropecuaria 7(4): 391-399.

Seleguini, A., M.J.A. Faria Junior, K.S.S. Benett, O.L. Lemos y S. Seno. 2013. Estratégias para produção de mudas de tomateiro utilizando paclobutrazol. Ciências Agrárias 34(2): 539-548.

SENASICA (Servicio Nacional de Sanidad Inocuidad y Calidad Agroalimentaria). 2010. Manual técnico de muestreo de productos agrícolas para determinación de residuos de plaguicidas. México. https://n9.cl/wqa1j (consulta de marzo 11, 2021).

Shalini, L. y D. Sharma. 2006. Persistence and movement of paclobutrazol residues in a mango orchard soil. Bulletin of Environmental Contamination and Toxicology 76(6): 930-934.

Sharma, D. y M.D. Awasthi. 2005a. Uptake of soil applied paclobutrazol in mango (Mangifera indica L.) and its persistence in fruit and soil. Chemosphere 60(2): 164-169.

Sharma, D. y M.D. Awasthi. 2005b. Persistence of paclobutrazol residues in soils of some mango growing areas of India. Pesticide Research Journal 17(1): 82-84.

Silva, E.R., M.G. Pinheiro, J.C. Carraro, F.F. Binotti, C.C. Burin, J.N. Oliveira et al. 2020. Cumulative applications of paclobutrazol with leaf nitrogen in Biquinho pepper. Journal of Experimental Agriculture International 42(5): 64-71.

Silva, K.S. y M.J.A. Faria Junior. 2011. Uso de paclobutrazol como estratégia para redução do porte e da brotação lateral de plantas de tomateiro. Ciência e Agrotecnologia 35(3): 539-546.

Silva, K.S., M.J.A. Faria Junior, C.G.S. Benett, A. Seleguini y O.L. Lemos. 2014. Utilização de paclobutrazol na produção de mudas de tomateiro. Comunicata Scientiae 5(2): 164-169.

Siqueira, D.L., P.R. Cecon y L.C.C. Salomão. 2008. Desenvolvimento do limoeiro "Volkameriano" (Citrus volkameriana Pasq.) submetido a doses de paclobutrazol e ácido giberélico. Revista Brasileira de Fruticultura 30(3): 764-768.

Taiz, L., E. Zeiger, I.M. Møller y A. Murphy. 2015. Plant Physiology and Development. Sinauer. Sunderland, MA, USA.

Tesfahun, W. 2018. A review on: response of crops to paclobutrazol application. Cogent Food & Agriculture 4(1): 1-9.

Velázquez-Alcaraz, T.J., L. Partida-Ruvalcaba, B. Acosta-Villegas y F. Ayala-Tafoya. 2008. Producción de plantas de tomate y chile aplicando Paclobutrazol al follaje. Universidad y Ciencia 24(1): 21-28.

Wang, X., P. Qi, G. Yang, X. Wang, H. Zhang, H. Xu et al. 2014. Enantioselective degradation of (2RS,3RS)-paclobutrazol in peach and mandarin under field conditions. Chirality 26(8): 400-404.

Xia, X., Y. Tang, M. Wei y D. Zhao. 2018. Effect of paclobutrazol application on plant photosynthetic performance and leaf greenness of herbaceous peony. Horticulturae 4(1): 5.



How to Cite

Juárez-Rodríguez, L., Pérez-Grajales, M., Castro-Brindis, R., Segura-Miranda, A., Magaña-Lira, N., & Magdaleno-Villar, J. J. (2021). Evaluation of doses, application periods and residuality of paclobutrazol in tomato. Bioagro, 34(1), 63-74. https://doi.org/10.51372/bioagro341.6