Endophytic Bacillus spp. differentially promotes growth of three blackberry varieties

Authors

  • Blanca Rojas-Sánchez Laboratorio de Diversidad Genómica, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
  • Gustavo Santoyo Laboratorio de Diversidad Genómica, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México https://orcid.org/0000-0002-0374-9661
  • Patricia Delgado-Valerio Facultad de Agrobiología Presidente Juárez, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Michoacán, México https://orcid.org/0000-0002-3975-8105
  • Ma. Rocha-Granados Facultad de Agrobiología Presidente Juárez, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Michoacán, México https://orcid.org/0000-0002-6817-5320

DOI:

https://doi.org/10.51372/bioagro342.1

Keywords:

Bacillus, blackberry, diffusible and volatile compounds

Abstract

The genus Bacillus produces volatile compounds, plant hormones, polysaccharides and enzymes related to the metabolism of phenylpropanoids, which represents a high potential for plant growth stimulation. This study analyzed the effects of diffusible and organic volatile compounds produced by four endophytic bacterial strains of the genus Bacillus (Bacillus sp. E25, B. toyonesis COPE52, B. thuringiensis UM46 and Bacillus sp. CR71) on the promotion of plant growth of blackberry seedlings, such as the Tupy, Kiowa, and UM-13 genotypes, growing in vitro. The results showed that the diffusible and volatile organic compounds produced by strain COPE52 promoted the length and dry weight of roots, numbers of roots, and chlorophyll concentration in the Tupy cultivar. The emission of diffusible compounds produced by COPE52 also promoted the roots dry weight and aerial parts, and the root length in Kiowa genotype, while volatile compounds produced by strain E25 had stimulating effects on most of analyzed variables in the same genotype. Diffusible and volatile compounds produced by strain CR71 had a major effect on number, length and dry weight of roots of the seedlings of UM-13 genotype, while the concentration of chlorophyll was increased by the same compounds produced by strain E25. Finally, endophytic Bacillus spp. differentially promoted plant growth of four varieties in Rubus sp. seedlings, and their beneficial effect was strain-dependent.

Downloads

Download data is not yet available.

References

Abbamondi, G., G. Tommonaro, N. Weywns, S. Thijs, W. Sillen, P. Gkorezis, C. Iodice, W. De Melo, B. Nicolaus y J. Vangronsveld. 2016. Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem. Biol. Technol. Agric. 3: 1-10.

Babu, A.N., S. Jogaiah, S. Ito, A.K. Nagaraj y L.P. Tran. 2015. Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial trait and induced biosysthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci. 231: 62-73.

Camelo, R.M., M.S. Vera y B.R. Bonilla. 2011. Mecanismos de acción de las rizobacterias promotoras del crecimiento vegetal. Rev. Corpoica-Ciencia Tecnol. Agrop. 12: 159-166.

Contreras, M., P. Loeza, J. Villegas, R. Farias y G. Santoyo. 2016. A glimpse of the endophytic bacterial diversity in root of blackberry plants (Rubus fruticosus). Genet. Mol. Res. 15(3): 1-9.

Contreras-Pérez, M., J. Hernández-Salmerón, D. Rojas-Solís, C. Rocha-Granados, M.C Orozco-Mosqueda, F.I. Parra-Cota, S. de los Santos-Villalobos y G. Santoyo. 2019. Draft genome analysis of the endophyte, Bacillus toyonensis COPE52, a blueberry (Vaccinium spp. var. Biloxi) growth-promoting bacterium. 3Biotech. 9(10): 1-6.

Elsayed, F.A., A. Abdulaziz, A.H. Alqarawi, R. Ramalingam, A. Asma, O.N. Al-Huqail, Fatma, A.M. Jahangir, I.A. Raedah y E. Dilfuza. 2017. Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J. Plant Inter. 13(1): 33-44.

Fernández-Pavía, S., G. Rodríguez-Alvarado, N. Gómez-Dorantes, M.R. Gregorio-Cipriano y L. Fernández-Pavía. 2012. Enfermedades en plantas en el Estado de Michoacán. Biológicas. 14(2): 75-89.

Friesen, M.L., S.S. Poster, S.C. Stark, E.J. von Wettberg, y J.L. Sach, y E. Martínez-Romero. 2011. Microbial mediated plant funtional traits. Annu. Rev. Ecol. Evol. Syst. 42: 23-26.

Gajdosová, A., M. Ostrolucká, G. Libiaková, E. Ondrusková y D. Simila. 2006. Microclonal propagaction of Vaccinium sp. and Rubus sp., and detection of genetic variability in culture in vitro. J Fruit Ornam. P. Reserch. 14(1): 103-118.

Glick, B.R. 2012. Plant growth-promoting bacterial: mechanisms and applications. Scientifica vol. 2012. Article ID 963401, 15 p.

Glick, B.R. 2015. Beneficial Plant-Bacterial Interactions. Springer. Heidelberg, Germany.

Hernández-León, R., D. Rojas-Sólis, M. Contreras-Pérez, M. Orozco-Mosqueda, L. Macías-Rodríguez, H. Reyes-de La Cruz, E. Valencia-Cantero y G. Santoyo. 2015. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol. Control. 181: 83-92.

Lin, Y., D. Du, C. Si, Q. Zhao, Z. Li y P. Li. 2014. Potential biocontrol Bacillus sp. strains isolated by an improved method from vinegar waste compost exhibit antibiosis against fungal pathogens and promote growth of cucumbers. Biol. Control. 71: 7-15.

Liu, S., H. Hao, X. Lu, X. Zhao, Y. Wang, Y. Zhang, Z. Xie y R. Wang. 2017. Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana. Nat. Scient. Rep. 7: 10795.

Lopes, R., S. Tsui, J. R. O.P. Gonçalves y M. Vieira de Quiroz. 2018. A look into a multifuntional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World J Microbiol Biotechnol. 34, 94.

Martínez-Absalón, S., D. Rojas-Solís, R. Hernández-León, C. Barajas-prieto. M. Orozco-Mosqueda, J. Peña-Cabriales, S. Sakuda, E. Valencia-Cantero y G. Santoyo. 2014. Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis cinerea. Biocon. Sci. Technol. 34 (12): 1349-1362.

Márquez-Santacruz, H., R. Hernández-León, M. Orozco-Mosqueda, I. Velazquez-Sepulveda y G. Santoyo. 2010. Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet. Mol. Res. 9: 2372-2380.

Meldau, D., S. Meldau, L. H. Hoang, S. Underberg, H. Wünsche y I. Baldwin. 2013. Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. The Plant Cell 25(7): 2731-2747.

Narula, S., R.C. Anand y S.S. Dudeja. 2013. Beneficial traits of endophytic bacteria from field pea nodules and plant growth promotion of field pea. J. Food Legum. 26: 73-79.

Rojas-Solís, D., E. Hernández-Pacheco y G. Santoyo. 2016. Evaluation of Bacillus and Pseudomonas to colonize the rhizosphere and their effect on growth promotion in tomato (Phytalis ixocarpa Brot. Ex Horm.). Rev Ch. Serie Horticultura. Vol. XXII. 1: 45-57.

Rojas-Solís, D., E. Zetter-Salmón, M. Contreras-Pérez, M.C. Rocha-Granados, L. Macías-Rodríguez y G. Santoyo. 2018. Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatalysis and agricultural biotechnology 13: 46-52.

Romera, F., M. García, C. Lucena, M.A. Martínez, M.À. Aparicio, J. Ramos, E. Alcántara, M. Angulo y R. Pérez-Vicente. 2018. Inducen systemic resistance (ISR) and Fe deficiency responses in dicot plants. Front. Plant Sci. 10: 287.

Saini, R., S. Dudeja, R. Giri y V. Kumar. 2015. Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivate in Northem India. J. B. Microbiol. 55: 74-81.

Saharan, B.S. y V. Nehra. 2011. Plant Growth Promoting Rhizobacteria: A Critical Reviw. Life Sciences and Medicine Research 2: 1-15.

SIAP-SAGARPA (Servicio de Información Agroalimentaria y Pesquera-Secretaria de Agricultura, Ganadería y Pesca). 2012-2018. http://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2021/Atlas-Agroalimentario-2018. (consulta de mayo, 2021).

Vera-Loor, M.A., A. Bernal-Cabrera, D. Vera-Coello, M. Leiva-Mora y L. Morales-Díaz de Villegas. 2020. Identification of endophytes endospore-forming bacteria associated to Teobroma cacao L. in Quininde, Esmeralda, Ecuador. Cent. Invest. Agrop. 47: 63-67.

Vurukonda, S., S. Vardharajula, M. Shrivastava y A. Skz. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184: 13-24.

Xiong, X., H. Liao, J. Ma, X. Liu, L. Zhang, X. Shi, X. Yang, X. Lu y Y. Zhu. 2014. Isolation on a rice endophytic bacterium, P. antoea sp. S d-1, with ligninolytic activity and characterization of its rice straw degradation ability. Lett. Appl. Microbiol. 58: 123-129.

Published

2022-05-01

How to Cite

Rojas-Sánchez, B., Santoyo, G., Delgado-Valerio, P., & Rocha-Granados, M. (2022). Endophytic Bacillus spp. differentially promotes growth of three blackberry varieties. Bioagro, 34(2), 99-110. https://doi.org/10.51372/bioagro342.1

Issue

Section

Artículos