Microorganisms of genus Trichoderma as phytohormone promoters and pathogen suppressors

Authors

DOI:

https://doi.org/10.51372/bioagro342.6

Keywords:

Alternaria, Fusarium, Helminthosporium, plant growth regulators

Abstract

Chemical products applied indiscriminately in agriculture have caused serious imbalances to the environment; thus, there is a need to use sustainable tools such as bioinoculants. Five strains of Trichoderma spp. were evaluated as producers of organic acids, auxins and gibberellins, as well as the radial growth inhibition percentage (RGIP) and its antagonistic capacity against plant pathogens such as Fusarium oxysporum, Alternaria spp. and Helminthosporium spp. Results showed that all strains segregated organic acids and the maximum production was attained at 72 hours; TJ7 (143.46 mm), TJ3 (138.07 mm), TM (130.71 mm), TB (126.88 mm) and TF (109.48 mm). All of them synthetized auxins and gibberellins. TF showed a higher production of the first ones (35.3 μg∙mL-1), and no statistical differences were found on the second ones (P≥0.05). The highest value of RGIP against Fusarium oxysporum was obtained on TB (83.3 %) and TJ3 (81.5 %), all descending values against Alternaria spp, were in the following order: TB (87.7 %), TJ3 (87.6 %), TJ7 (87.2 %), TF (87.0 %) and TM (86.7 %) while TJ3 reached the highest value (76.6 %) against Helminthosporium spp. The evaluated strains showed class 1 and 2 of antagonistic capacity against plant pathogens (values 1.0 to 2.0) according to the scale of Bell et al. (1982), showing that they have the potential to be tested under greenhouse or open field conditions as biological control agents and/or plant growth promoters, their combination could play a promising role as a biotechnological product and a sustainable tool in agricultural areas of Northern Mexico.

Downloads

Download data is not yet available.

References

Bader, A. N., G.L. Salerno, F. Covacevich y V.F. Consolo. 2020. Native Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum L.). Journal of King Saud University-Science 32(1): 867-873.

Bell, D., H. Well y C. Markham. 1982. “In vitro” antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology 72(49): 379-382.

Cherif, S.S. y C.S. Benhamou. 1990. Cytochemical aspects of chitin breakdown during the parasitic action of a Trichoderma spp., on Fusarium oxysporum f. sp. Radices lycopersici. Phytopathology 80: 1406-1414.

Chowdappa, P., K.K. Upreti, M.J. Lakshmi y S.P. Kumar. 2013. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control 65: 109-117.

Chun-Chao, C., K. Yu-Lin, C. Chen-Ching y C. Wei-Liang. 2007. Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biology and Fertility of Soils 43: 575-584.

Chung, H., M. Park, M. Madhaiyan, S. Seshadri, J. Song, H. Cho y T. Sa. 2005. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry 37: 1970-1974.

Díaz, G., G. Rodríguez, L. Montana, T. Miranda, C. Basso y M. Arcia. 2020. Efecto de la aplicación de bioestimulantes y Trichoderma sobre el crecimiento en plántulas de maracuyá (Passiflora edulis Sims) en vivero. Bioagro 32(3): 195-204.

Dighton, J. 2007. 16 nutrient cycling by saprotrophic fungi in terrestrial habitats. The Mycota. Enviromental and Microbial Relationships 4: 287.

Duarte-Leal, Y., A. Lamz-Piedra y B. Martínez-Coca. 2017. Antagonismo in vitro de aislamientos de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg frente a Sclerotium rolfsii Sacc. Revista Protección Vegetal 32(3): 1-11.

El-Azouni, I.M. 2008. Effect of phosphate solubilizing fungi on growth and nutrient uptake of soybean (Glycine max L.) plants. Journal of Applied Sciences Research 4: 592-598.

Ezziyyani, M., C. Pérez, S. Ahmed, M. Requena y M. Candela. 2004. Trichoderma harzianum como biofungicida para el biocontrol de Phytophthora capsici en plantas de pimiento (Capsicum annuum L.). Annales of Biology 26: 35-45.

González-Mendoza, D., R. Troncoso-Rojas, C. Ceceña Durán, O. Grimaldo-Juárez, R. Zamora-Bustillo y E. Ruiz-Sánchez. 2015. Compuestos fenólicos y capacidad antioxidante presente en tres variedades de berenjena cultivadas en el valle de Mexicali, Baja California. IDESIA (Arica) 33(3): 17-21.

González-Soto, T., L. Moreno-Ramírez, R. Troncoso-Rojas, D. González-Mendoza, A. Sánchez-Estrada, O. Grimaldo-Juárez, O. Tzinzun-Camacho y C. Ceceña-Durán. 2017. Inoculación de Trichoderma longibrachiatum en algodón transgénico: Cambios en compuestos fenólicos y enzimas de estrés oxidativo. IDESIA (Arica) 35(1): 19-24.

Hernández-Morales, J., T. Romero-Rosales, A.C. Michel-Aceves, M. Vargas-Hernández, A. Monteon-Ojeda y J.L. Valenzuela-Lagarda. 2021. Antagonismo enzimático de Trichoderma spp. sobre Fusarium oxysporum y Phytophthora parasitica en Hibiscus sabdariffa L. Bioagro 33(3): 203-214.

Jaroszuk-Ściseł, J., R. Tyśkiewicz, A. Nowak, E. Ozimek, M. Majewska, A. Hanaka y G. Janusz. 2019. Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. International Journal of Molecular Sciences 20(19): 4923.

Jones, D.L., P.G. Dennis, A.G. Owen y P.A. Van-Hess. 2003. Organic acid behavior in soils-misconceptions and knowledge gaps. Plant Soil 248: 31-41.

Kotasthane, A., T. Agrawal, R. Kushwah and O.V. Rahatkar. 2015. In vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and response towards growth of cucumber, bottle gourd and bitter gourd. European Journal of Plant Pathology 141: 523-543.

Kumar, V. y N. Narula. 1999. Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biology and Fertility of Soils 28: 301-305.

Kumar, N.V., K.S. Rajam y M.E. Rani. 2017. Plant growth promotion efficacy of indole acetic acid (IAA) produced by a mangrove associated fungi-Trichoderma viride VKF3. International Journal of Current Microbiology and Applied Sciences 6(11): 2692-2701.

León, R., S.C. Pino y D.B. Núñez. 2012. Aislamiento y selección de cepas de Trichoderma y su efecto antagonista frente a Sclerotium rolfsii, Rhizoctonia sp. y Fusarium sp. Centro Agrícola 39(2): 43-48.

López-Valenzuela, B.E., A.D. Armenta-Bojórquez, S. Hernández-Verdugo, M.A. Apodaca-Sánchez, J. Samaniego-Gaxiola, K.Y. Leyva-Madrigal y A. Ortiz-Valdez. 2015. Selección in vitro e identificación de aislados de Trichoderma spp. y Bacillus spp. nativos para el control de Phymatotrichopsis omnivora. ITEA‑Información Técnica Económica Agraria 111(4): 310-325.

Martínez, B., D. Infante, D. Reyes, E. González, H. Baños y A. Cruz. 2008. Selección de aislamientos de Trichoderma spp. candidatos a biofungicidas para el control de Rhizoctonia sp. en arroz. Revista de Protección Vegetal 23: 118-125.

Mohite, B. 2013. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition 13: 638-649.

Moreno-Ramírez, L., D. González-Mendoza, F. Gutierrez-Miceli, M. Avilés-Marin, C. Ceceña-Durán y O. Grimaldo-Juárez. 2014. Phytohormones Production and Phosphate Solubilization Capacities of Acinetobacter sp., Strains Isolation from Mexicali Valley. Journal of Pure and Applied Microbiology 8(4): 1-5.

Nawrocka, J. y U. Malolepsza. 2013. Diversity in plant systemic resistance induced by Trichoderma. Biological Control 67: 149-156.

Ng, L.C., A. Ngadin, M. Azhari y N.A. Zahar. 2015. Potential of Trichoderma spp. as biological control agents against bakanae phathogen (Fusarium fujikuroi) in rice. Asian Journal of Plant Pathology 9(2): 46-58.

Pandey, A., N. Das, B. Kumar, K. Rinu y P. Trivedi. 2008. Phosphate solubilization by Penicillium spp. isolated from soil samples of Indian Himalayan region. World Journal of Microbiology and Biotechnology 24: 97-102.

Reyes, Y., B. Martínez y D. Infante. 2008. Evaluación de la actividad antagónica de trece aislamientos de Trichoderma spp. sobre Rhizoctonia sp. Revista de Protección Vegetal 23(2): 112-117.

Sabre, W. I., K.M. Ghoneem, Y.M. Rashad y A.A. Al-Askar. 2017. Trichoderma harzianum WKY1: an indole acetic acid producer for growth improvement and anthracnose disease control in sorghum. Biocontrol Science and Technology 27(5): 654-676.

SIAP. 2020. Servicio de Información Agroalimentaria y Pesquera. Secretaría de Agricultura y Desarrollo Rural. https://n9.cl/emrik (consulta de marzo 3, 2022)

Shaikh, Z. y P. Qureshi. 2013. Screening and Isolation of organic acid producers from simples of diverse habitats. International Journal of Current Microbiology and Applied Sciences 2(9): 39-44.

Tranier, M.S., J. Pognant-Gros, R. De la Cruz-Quiroz, C.N. Aguilar-González, T. Mateille y S. Roussos. 2014. Commercial Biological Control Agents Targeted Against Plan-Parasitic Root-knot Nematodes. Brazilian Archives of Biology and Technology 57(6): 831-841.

Turaeva B., A. Soliev, F. Eshboev, L. Kamolov, N. Azimova, H. Karimov et al. 2020. The use of three fungal strains in producing of indole-3-acetic acid and gibberellic acid. Plant Cell Biotechnology and Molecular Biology 21(35&36): 32-43.

Vacheron, J., G. Desbrosses, M.L. Bouffaud, B. Touraine, Y. Moënne-Loccoz, D. Muller, L. Legendre, F. Wisniewski-Dyé y C. Prigent-Combaret. 2013. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science 4(356): 1-19.

Zhao, L., F. Wang, Y.Q. Zhang y J.J. Zhang. 2014. Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plants. Journal of Basic Microbiology 54: 115-124.

Zuñiga-Mendoza, E. y L.F. Ceja-Torres. 2017. In vitro antagonism of Trichoderma harzianum on Sclerotium cepivorum Berk, and S. rolfsii Sacc., causal agents of onion rot. Phyton. Revista Internacional de Botánica Experimental 86: 7-13.

Published

2022-05-01

How to Cite

López-Valenzuela, B., Tzintzun-Camacho, O., Armenta-Bojórquez, A., Valenzuela-Escoboza, F., Lizárraga-Sánchez, G., Ruelas-Islas, J., & González-Mendoza, D. (2022). Microorganisms of genus Trichoderma as phytohormone promoters and pathogen suppressors. Bioagro, 34(2), 163-172. https://doi.org/10.51372/bioagro342.6

Issue

Section

Artículos

Most read articles by the same author(s)