Estimation of concentration of chlorophyll, N, and biomass using non-destructive measurements in arugula (Eruca sativa)

Authors

  • Rodrigo Mendoza-Tafolla Posgrado en Ciencias Agropecuarias y Desarrollo Rural, Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos. Cuernavaca, Morelos, México. https://orcid.org/0000-0002-8079-1468
  • Porfirio Juarez-Lopez Posgrado en Ciencias Agropecuarias y Desarrollo Rural, Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos. Cuernavaca, Morelos, México. https://orcid.org/0000-0002-4241-1110
  • Ronald Ontiveros-Capurata Cátedra CONACYT-Instituto Mexicano de Tecnología del Agua, Morelos, México. https://orcid.org/0000-0002-5094-0469
  • Irán Alia-Tejacal Posgrado en Ciencias Agropecuarias y Desarrollo Rural, Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos. Cuernavaca, Morelos, México. https://orcid.org/0000-0002-2242-2293
  • Dagoberto Guillén-Sánchez Posgrado en Ciencias Agropecuarias y Desarrollo Rural, Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos. Cuernavaca, Morelos, México.
  • Oscar Villegas-Torres Posgrado en Ciencias Agropecuarias y Desarrollo Rural, Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos. Cuernavaca, Morelos, México. https://orcid.org/0000-0001-9885-3906
  • Ana Chávez-Bárcenas Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo. Uruapan, Michoacán, México. https://orcid.org/0000-0003-1416-3743

DOI:

https://doi.org/10.51372/bioagro342.5

Keywords:

atLEAF, MC-100, leafy vegetable, plant nutrition, SPAD

Abstract

Nitrogen is an essential nutrient for plants and the most required element in leafy vegetables. The objective of this research was to estimate the concentration of chlorophyll, of nitrogen and fresh biomass by using non-destructive portable meters in arugula (Eruca sativa L.). The research was carried out in a greenhouse,  where  the treatments  were  five  levels  of  NO3-N  (0, 4, 8, 12  and  16 mEq·L-1) based on Steiner's nutrient solution. The evaluations were weekly for both greenhouse variables (fresh biomass, SPAD, atLEAF and MC-100 readings) and laboratory variables (chlorophyll and N concentrations). The results showed that the relationship between SPAD readings, nitrogen, chlorophyll and fresh matter were high, positive and significant, with correlation coefficients of 0.93 - 0.97; for atLEAF readings, similar relationships were observed, with correlation coefficients of 0.96-0.99. The relationships between SPAD, atLEAF, and MC-100 readings were also high, positive, and significant, with correlation coefficients from 0.97 to 0.98. This indicates that the SPAD, atLEAF and MC-100 meters are valid in-situ methods to estimate the nutritional status of chlorophyll and nitrogen in arugula cultivation under greenhouse conditions in a non-destructive, fast and accurate way.

Downloads

Download data is not yet available.

References

Abdelhamidg, M., T. Horiuchi y S. Oba. 2004. Evaluation of the SPAD value in faba bean (Vicia faba L.) leaves in relation to different fertilizer applications. Plant Production Science 6(3): 185-189.

Ali, M.M., A. Al-Ani, D. Eamus y D.K. Tan. 2007. Leaf nitrogen determination using handheld meters. Precision Agriculture. Journal of Plant Nutrition 40(7): 928-953.

Basyouni, R. y B. Dunn. 2014. Use of reflectance sensors to monitor plant nitrogen status in horticultural plants. Agricultural and Forest Meteorology 6: 581-584

Basyouni, R., B. Dunn y C. Goad. 2015. Use of non-destructive sensors to assess nitrogen status in potted poinsettia (Euphorbia pulcherrima L. (Willd. ex Klotzsch)) production. Scientia Horticulturae 192: 47-53.

Calderón M.L.A., R.A.M. Bernal y T. Pérez. 2011. Ensayo preliminar sobre la utilización de un medidor portátil de clorofila para estimar el nitrógeno foliar en orégano (Origanum vulgare L.). Revista Facultad de Ciencias Básicas 7(2): 150-166.

Castro, Y. y E. Blanco. 2018. Estimación del contenido de clorofila y nitrógeno en plantas de pimentón inoculadas con bacterias rizosféricas. Revista científica UNET Agropecuaria 30: 105-112.

Cho, Y.Y., S. Oh, M.M. Oh y J.E. Son. 2007. Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Scientia Horticulturae 111(4): 330-334.

Coelho, F.S., P.C.R. Fontes, M. Puiatti, J.C.L. Neves y M. C. de C. Silva. 2010. Dose de nitrogênio associada à produtividade de batata e índices do estado de nitrogênio na folha. Revista Brasileira de Ciencia do Solo 34(4): 1175-1183.

Cruz-Crespo, E., A. Can-Chulim, J. Loera-Rosales, G. Aguilar-Benítez, J. Pineda-Pineda, y R. Bugarín-Montoya. 2017. Extracción de N-P-K en Coriandrum sativum 'Pakistan' en hidroponía. Revista Mexicana de Ciencias Agrícolas 8(2): 355-367.

Cunha, A.R. da, I. Katz, A. de P. Sousa y R.A. Martinez-Uribe. 2015. Indice SPAD en el crecimiento y desarrollo de plantas de lisianthus en función de diferentes dosis de nitrógeno en ambiente protegido. Idesia (Arica) 33(2): 97-105.

De Souza, R., M.T. Peña-Fleitas, R.B. Thompson, M. Gallardo, R. Grasso y F.M. Padilla. 2019. The use of chlorophyll meters to assess crop n status and derivation of sufficiency values for sweet pepper. Sensors 19(13): 2949-2955.

Dey, A.K., M. Sharma y M.R. Meshram. 2016. An analysis of leaf chlorophyll measurement method using chlorophyll meter and image processing technique. Procedia computer science 85: 286-292.

Dunn, B.L., H. Singh y C. Goad. 2018a. Relationship between chlorophyll meter readings and nitrogen in poinsettia leaves. Journal of Plant Nutrition 41(12): 1566-1575.

Dunn, B.L., H. Singh, M. Payton y S. Kincheloe. 2018b. Effects of nitrogen, phosphorus, and potassium on SPAD-502 and atLEAF sensor readings of Salvia. Journal of Plant Nutrition 41(13): 1674-1683.

Elsayed, S., G. Barmeier y U. Schmidhalter. 2018. Passive reflectance sensing and digital image analysis allows for assessing the biomass and nitrogen status of wheat in early and late tillering stages. Frontiers in Plant Science 9: 1978-1989

Fenech-Larios, L., E. Troyo-Diéguez, M. Trasviña-Castro, F. Ruiz-Espinoza, A. Beltrán-Morales, B. Murillo-Amador y S. Zamora-Salgado. 2009. Relación entre un método no destructivo y uno de extracción destructivo, para medir el contenido de clorofila en hojas de plántula de albahaca (Ocimum basilicum L). Universidad y Ciencia 25(1): 99-102.

Fontes, P.C.R. y C.P. Ronchi. 2002. Critical values of nitrogen indices in tomato plants grown in soil and nutrient solution determined by different statistical procedures. Pesquisa Agropecuaria Brasileira 37(10): 1421-1429.

Gianquinto, G., P. Sambo y F. Pimpini. 2003. The use of SPAD-502 chlorophyll meter for dynamically optimizing the nitrogen supply in potato crop: First results. Acta Horticulturae 607: 191-196.

Gitelson, A.A., Y. Gritz y M.N. Merzlyak. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology 160(3): 271-282.

Hebbar, K.B., P. Subramanian, T.L. Sheena, K. Shwetha, P. Sugatha, M. Arivalagan y P.V. Varaprasad. 2016. Chlorophyll and nitrogen determination in coconut using a non-destructive method. Journal of Plant Nutrition 39(11): 1610-1619.

Hawkesford, M., W. Horst, T. Kichey, H. Lambers, J. Schjoerring, I.S. Moller y P. White. 2012. Functions of macronutrients. In: P. Marschner (ed.). Marschners’s Mineral Nutrition of higher plants. 3rd ed. USA. Academic press. pp. 135-189

Kalaji, H.M., P. Dąbrowski, M.D. Cetner, I.A. Samborska, I. Łukasik, M. Brestic y B.M. Panchal. 2017. A comparison between different chlorophyll content meters under nutrient deficiency conditions. Journal of Plant Nutrition 40(7): 1024-1034.

Kumar-Sharma, M. 2013. An Introduction to Plant Nutition. In: Kumar P. y M. Kumar-Sharma (eds.). Nutrient deficiencies of field crops: guide to diagnosis and management. CABI International. Tarxien, Malta. 1-7 p.

León, A.P., S.Z. Viña, D. Frezza, A. Chaves y A. Chiesa. 2007. Estimation of chlorophyll contents by correlations between SPAD‐502 meter and chroma meter in butterhead lettuce. Communications in Soil Science and Plant Analysis 38(19-20): 2877-2885.

Loh, F.C., J.C. Grabosky y N.L. Bassuk. 2002. Using the SPAD 502 meter to assess chlorophyll and nitrogen content of benjamin fig and cottonwood leaves. HortTechnology 2: 682-686.

Martín, I., N. Alonso, M. López, M. Prieto, C. Cadahía y E. Eymar. 2007. Estimation of leaf, root, and sap nitrogen status using the SPAD‐502 chlorophyll meter for ornamental shrubs. Communications in Soil Science and Plant Analysis 38(13-14): 1785-1803.

Mendoza-Tafolla, R.O., P. Juarez-Lopez, R.E. Ontiveros-Capurata, M. Sandoval-Villa, I. Alia-Tejacal y G. Alejo-Santiago. 2019. Estimating nitrogen and chlorophyll status of romaine lettuce using SPAD and atLEAF readings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47(3): 751-760.

Padilla, F., R. De Souza, M. Peña-Fleitas, M. Gallardo, C. Giménez y R. Thompson. 2018. Different responses of various chlorophyll meters to increasing nitrogen supply in sweet pepper. Frontiers in Plant Science 9: 63-72.

Reis, A., E. Furlani Junior, S. Buzetti y M. Andreotti. 2006. Diagnóstico da exigência do cafeeiro em nitrogênio pela utilização do medidor portátil de clorofila. Bragantia 65(1): 163-171.

Steiner, A. 1984. The universal nutrient solution. Proceedings of the 6th International Congress on Soilless Culture International Soc. For Soilless Culture. ISOSC. (pp. 633-649). Wageningen, The Netherlands.

Taiz, L., E. Zeiger, I. M. Moller y A. Murphy. 2014. Plant Physiology & Development. 6th Oxford University Press. United Kingdom.

Uddling, J., J. Gelang-Alfredsson, K. Piikki y H. Pleijel. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research 91(1): 37-46.

Westerveld, S.M., A.W. McKeown, M.R. McDonald y C.D. Scott-Dupree. 2003. Chlorophyll and nitrate meters as nitrogen monitoring tools for selected vegetables in southern Ontario. Acta Horticulturae 627: 259-266.

Wettstein, D. 1957. Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden Experimental Cell Research. 12(3): 427-506.

Yadav, S., I.Y. Prakash y G. Dutta S. 2010. Estimation of the chlorophyll content of micropropagated potato plants using RGB based image analysis. Plant Cell, Tissue and Organ Culture (PCTOC) 2: 183-188.

Yamamoto, A., T. Nakamura, J. Adu-Gyamfi y M. Saigusa. 2002. Relationship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD-502). Journal of Plant Nutrition 25(10): 2295-2301.

Zebarth, B.J., M. Younie, J. Paul y S. Bittman. 2002. Evaluation of leaf chlorophyll index for making fertilizer nitrogen recommendations for silage corn in a high fertility environment. Communications in Soil Science and Plant Analysis 33(5-6): 665-684.

Zhu, J., N. Tremblay y Y. Liang. 2012. Comparing SPAD and atLEAF values for chlorophyll assessment in crop species. Canadian Journal of Soil Science 92(4): 645-648.

Published

2022-05-01

How to Cite

Mendoza-Tafolla, R., Juarez-Lopez, P., Ontiveros-Capurata, R., Alia-Tejacal, I., Guillén-Sánchez, D., Villegas-Torres, O., & Chávez-Bárcenas, A. (2022). Estimation of concentration of chlorophyll, N, and biomass using non-destructive measurements in arugula (Eruca sativa). Bioagro, 34(2), 151-162. https://doi.org/10.51372/bioagro342.5

Issue

Section

Artículos