Antibiosis and mycoparasitism of endophytic fungi on the causal agent of blueberry gray mold (Botrytis cinerea).

Authors

DOI:

https://doi.org/10.51372/bioagro343.1

Keywords:

Antagonism, colonization, inhibition, pathogen, secondary metabolites

Abstract

The "gray mold" is one of the main diseases of the blueberry crop that causes economic losses, the causal agent is the fungus Botrytis cinerea. The application of fungicides is one of the main strategies for its management; however, the pathogen has developed resistance to groups of fungicides. In search of a new control alternative, the antagonistic activity of 40 strains of endophytic fungi (EF) on B. cinerea was evaluated at the National University of Cañete. Antibiosis tests were performed with the extraction of secondary metabolites from the strains of HE and mycoparasitism with the method pre-colonized plate by the pathogen, where the mycelial inhibition of the pathogen and HE colonization, respectively, were evaluated. The metabolites obtained from the genus Aspergillus (strain 111) completely inhibited the mycelial growth of pathogen, followed by the genera Nigrospora (58) and Aspergillus (117) with 89.82 % and 63.33 % respectively compared to Cladosporium (116) which had less effect towards the pathogen with 3.19 % mycelial inhibition. However, all the strains of the genus Trichoderma (1, 91, 93 and 94), Alternaria (5 and 78), Fusarium (106), Cladosporium (41) and Lasiodiplodia (49) completely colonized the pathogen and were considered as more aggressive mycoparasites followed of the 117 and 111 Aspergillus strains that colonized 83.33 % and 63.33 % to the pathogen respectively. These endophytic fungi with antagonistic activity towards B. cinerea could be used as an alternative for disease control in blueberry cultivation.

Downloads

Download data is not yet available.

References

Abbey, J.A. 2017. Sustainable management of Botrytis blossom blight in wild blueberry (Vaccinium angustifolium Aiton). Tesis. Dalhousie University, Halifax, Nova Scotia. https://n9.cl/hj1fq (consulta de julio 8, 2021).

Aguilar-Luna, J.M.E, S. López-López y J.M. Loeza-Corte. 2021. Susceptibility of fungi, mainly chocolate spot (Botrytis fabae Sard.), to gamma irradiation in the faba bean crop (Vicia faba L.). Bioagro 33(1): 29-40.

Al-Badi, R. S., T. G. Karunasinghe, A. M. Al-Sadi, I. H. Al-Mahmooli y R. Velazhahan. 2020. In vitro antagonistic activity of endophytic fungi isolated from Shirazi Thyme (Zataria multiflora Boiss.) against Monosporascus cannonballus. Polish Journal of Microbiology 69(1): 1-5.

Apolonio-Rodríguez, I., O. Franco-Mora, M. L. Salgado-Siclán, J. G. Aquino-Martínez, I. Apolonio-Rodríguez, O. Franco-Mora et al. 2017. Inhibición in vitro de Botrytis cinerea con extractos de hojas de vid silvestre (Vitis spp.). Revista Mexicana de Fitopatología 35(2): 170-185.

Bailey, B.A., H. Bae, M.D. Strem, J. Crozier, S.E. Thomas, G.J. Samuels et al. 2008. Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control 46(1): 24-35.

Barnett, H.L. y B.B. Hunter. 1998. Illustrated Genera of Imperfect Fungi. Macmillan Publishing Co., London.

Barron, G.L. 1968. The genera of Hyphomycetes from soil. Baltimore. The Williams and Wilkins Co. Tulsa, OK, USA.

Bolívar-Anillo, H.J., C. Garrido y I.G. Collado. 2020. Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochemistry Reviews 19(3): 721-740.

Chowdhary, K. y S. Sharma. 2017. Potential of fungal endophytes in plant growth and disease management. In: D.P. Singh et al. (eds.). Plant-Microbe Interactions in Agro-Ecological Perspectives: Volume 1. Fundamental Mechanisms, Methods and Functions. Springer, Singapore. pp. 275-290.

Dutta, D., K.C. Puzari, R. Gogoi y P. Dutta. 2014. Endophytes: exploitation as a tool in plant protection. Brazilian Archives of Biology and Technology 57(5): 621-629.

Eram, D., M.K. Arthikala, G. Melappa y G. Santoyo. 2018. Alternaria species: endophytic fungi as alternative sources of bioactive compounds. Italian Journal of Mycology 47(1): 40-54.

Harman, G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96(2): 190-194.

Howell, C. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease 87(1): 4-10.

Kriaa, M., I. Hammami, M. Sahnoun, M.C. Azebou, M.A. Triki y R. Kammoun. 2015. Biocontrol of tomato plant diseases caused by Fusarium solani using a new isolated Aspergillus tubingensis CTM 507 glucose oxidase: Comptes Rendus Biologies 338(10): 666-677.

Kubicek, C.P., A. Herrera-Estrella y V. Seidl-Seiboth. 2011. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 12(40): 1-15.

Kumar, C. G. 2020. Bioprospecting for secondary metabolites of family Botryosphaeriaceae from a biotechnological perspective. In: J. Singh y P. Gehlot (eds.). New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier. pp. 167-286.

Laredo-Alcalá, E.I., J.L. Martínez-Hernández, A. Iliná, L. Guillen-Cisneros y F.D. Hernández-Castillo. 2017. Aplicación de ácido jasmónico como inductor de resistencia vegetal frente a patógenos. Revista Mexicana de Ciencias Agrícolas 8(3): 673-683.

Leon-Ttacca, B., N. Ortiz-Calcina, N. Condori-Ticona y E. Chura-Yupanqui. 2018. Cepas de Trichoderma con capacidad endofítica sobre el control del mildiu (Peronospora variabilis Gäum.) y mejora del rendimiento de quinua. Revista de Investigaciones Altoandinas 20(1): 19-30.

Li, X.-J., Q. Zhang, A.-L. Zhang y J.-M. Gao. 2012. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. Journal of Agricultural and Food Chemistry 60(13): 3424-3431.

Moreno, A.B., A.M. Del Pozo, M. Borja y B.S. Segundo. 2003. Activity of the antifungal protein from Aspergillus giganteus against Botrytis cinerea. Phytopathology 93(11): 1344-1353.

Moricca, S., A. Ragazzi, K. R. Mitchelson y G. Assante. 2001. Antagonism of the Two-Needle Pine Stem Rust Fungi Cronartium flaccidum and Peridermium pini by Cladosporium tenuissimum in vitro and in planta. Phytopathology 91(5): 457-468.

Redagricola. 2020. El arándano peruano alcanza el liderazgo mundial. https://n9.cl/1r45 (consulta de julio 8, 2021).

Romanazzi, G. y S. Droby. 2016. Control strategies for postharvest grey mould on fruit crops. In: S. Fillinger y Y. Elad (eds.). Botrytis–The Fungus, the Pathogen and Its Management in Agricultural Systems. Springer International Pub., Cham, Denmark. pp. 217-228.

Santana, K. 2021. Fortalecimiento de la oferta exportable de arándanos frescos al mercado de los Estados Unidos, período 2022. Tesis. Universidad Norbert Wiener. Lima. 174 p. https://n9.cl/4b71o (consulta de julio 28, 2022)

Seidl-Seiboth, V., K. Ihrmark, I. Druzhinina, y M. Karlsson. 2014. Molecular Evolution of Trichoderma Chitinases. In: V.K. Gupta et al. (eds.). Biotechnology and Biology of Trichoderma. Elsevier, Amsterdam. pp. 67-78.

Shao, W., Y. Zhao, y Z. Ma. 2021. Advances in understanding fungicide resistance in Botrytis cinerea in China. Phytopathology 111(3): 455-463.

Thongkamngam, T. y T. Jaenaksorn. 2017. Fusarium oxysporum (F221-B) as biocontrol agent against plant pathogenic fungi in vitro and in hydroponics. Plant Protection Science 53(2): 85-95.

Ticona, N., B. León y J.G.Z. Pari. 2016. Hongos antagónicos nativos de Vicia faba L. con capacidad de biocontrol hacia Botrytis fabae S. Revista Investigaciones Altoandinas 18(3): 281-288.

Toghueo, R.M.K., P. Eke, Í. Zabalgogeazcoa, B.R.V. de Aldana, L.W. Nana y F.F. Boyom. 2016. Biocontrol and growth enhancement potential of two endophytic Trichoderma spp. from Terminalia catappa against the causative agent of common bean root rot (Fusarium solani). Biological Control 96(1): 8-20.

Vásquez, M.V., R.E. Lozano, S.P. Martínez y D.S. del Castillo. 2018. Hongos endófitos foliares como candidatos a biocontroladores contra Moniliophthora spp. de Theobroma cacao (Malvaceae) en Ecuador. Acta Biológica Colombiana 23(3): 235-241.

Watanabe, T. 2002. Pictorial Atlas of Soil and Seed Fungi. Morphologies of Cultured Fungi and Key to Species. CRC Press. Washington, D.C.

Williamson, B., B. Tudzynski, P. Tudzynski y J.a.L. Van Kan. 2007. Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology 8(5): 561-580.

Zhao, J. H., Y. L. Zhang, L. W. Wang, J. Y. Wang y C. L. Zhang. 2012. Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World Journal of Microbiology & Biotechnology 28(5): 2107-2112.

Published

2022-08-31

How to Cite

Leon-Ttacca, B., Yactayo-Yataco, R., Astete-Farfán, A., Mattos-Calderón, L., & Arestegui-Cantoral, J. (2022). Antibiosis and mycoparasitism of endophytic fungi on the causal agent of blueberry gray mold (Botrytis cinerea). Bioagro, 34(3), 209-220. https://doi.org/10.51372/bioagro343.1