Adaptability of Rhizoctonia solani AG-1 IA for mancozeb sensitivity under temperature stress




Evolvability, genetic and environmental variation, heritability, soybean foliar blight, thermal adaptability


The genetic architecture of quantitative characters in plants can be influenced by stress due to environmental changes, in combination with the decrease in the organism’s average performance, resulting in genetic and environmental variances. The main objective of this study was to determine how the high-temperature stress affects the sensitivity of three populations of the soybean foliar blight pathogen Rhizoctonia solani AG-1 IA from Mato Grosso, Maranhão, and Tocantins to a broad-spectrum fungicide. The specific objective was to determine the effect of environmental stress on evolvability components (i.e., the selection response measures such as genotypic, environmental, and phenotypic variances) associated with sensitivity to the broad spectrum dithiocarbamate fungicide mancozeb. The fungal isolates from the three pathogen populations were grown under two temperatures (25 °C and 33.5 ºC, optimum and stress, respectively) and three fungicide concentrations (0.0, 0.32, and 0.64 g·L-1 of active ingredient). The mycelial growth was measured, and evolvability components, such as the genotypic variance coefficient (IG), the environmental variance (IE), and the broad-sense heritability (h2), were determined. The results showed that high-temperature stress decreased (≈ 0.1 units, in a scale from 0 to 1.0) the genotypic variance and the heritability for mancozeb sensitivity in three populations of the soybean foliar blight pathogen R. solani AG-1 IA.


Download data is not yet available.


Bernardes de Assis, J., M. Storari, M. Zala, W. Wang, D. Jiang, L. Shidong, M. Jin, B.A. McDonald, and P.C. Ceresini. 2009. Genetic structure of populations of the rice-infecting pathogen Rhizoctonia solani AG-1 IA from China. Phytopathology 99(9): 1090-1099.

Chavarro-Mesa E., P. Ceresini, D. Pereira, S. Vicentini, T. Silva, L. Ramos-Molina. M. Negrisoli, D. Schurt, and J.R. Vieira Júnior. 2020. A broad diversity survey of Rhizoctonia species from the Brazilian Amazon reveals the prevalence of R. solani AG-1 IA on signal grass and the new record of AG-1 IF on cowpea and soybeans. Plant Pathol. 69: 455–466.

Ciampi M.B., M.C. Meyer, M.J.N. Costa, M. Zala, B.A. McDonald, and P.C. Ceresini. 2008. Genetic structure of populations of Rhizoctonia solani anastomosis group-1 IA from soybean in Brazil. Phytopathology 98(8): 932–941.

Costa-Souza E., E.E. Kuramae, A.K. Nakatani, M.A. Basseto, A.S. Prabhu, and P.C. Ceresini. 2007. Caracterização citomorfológica, cultural, molecular e patogênica de Rhizoctonia solani Kühn associado ao arroz em Tocantins, Brasil. Summa Phytopathol 33(2): 129-136.

Fenille R.C., N.L. Souza, and E.E. Kuramae. 2002. Characterization of Rhizoctonia solani associated with soybean in Brazil. Eur J Plant Pathol 108(8): 783–792.

Ferro C.G., T.C. Silva, S.N.C. Vicentini, G.M. Ferraudo, and P.C. Ceresini. 2019. Levels of regional phenotypic adaptation (QST) indicated that neutrality shaped the population structure of Rhizoctonia solani AG-1 IA from soybean. Rev. Caatinga 33(3): 608-618.

Ghini R., E. Hamada, and W. Betiol. 2008. Climate change and plant diseases. Sci Agric 65: 98-107.

Godoy C.V., C.D.S. Seixas, R.M. Soares, F.C. Marcelino-Guimarães, M.C. Meyer, and L.M. Costamilan. 2016. Asian soybean rust in Brazil: past, present, and future. Pesqui Agropec Bras 51(5): 407-421.

González-Vera A.D., J. Bernardes-de-Assis, M. Zala, B.A McDonald, F. Correa-Victoria, E.J. Graterol-Matute, and P.C Ceresini. 2010. Divergence Between Sympatric Rice- and Maize-Infecting Populations of Rhizoctonia solani AG-1 IA from Latin America. Phytopathology 100(2): 172-182.

Gunter L.E.E.E., G.A. Tuskan, C.A. Gunderson, and R.J. Norby. 2000. Genetic variation and spatial structure in sugar maple (Acer saccharum Marsh.) and implications for predicted global-scale environmental change. Global Change Biol 6(3): 335-344.

Hoffmann A.A., and J. Merilä. 1999. Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol Evol 14(3): 96-101.

Houle D. 1992. Comparing Evolvability and Variability of Quantitative Traits. Genetics 130(1): 195-204.

Kataria H.R., and R.K. Grover. 1978. Comparison of fungicides for the control of Rhizoctonia solani causing damping-off of mung bean (Phaseolus aureus). Ann Appl Biol 88: 251-263.

Lucas J.A., N.J. Hawkins, and B.A. Fraaije. 2015. The Evolution of Fungicide Resistance. In: Sima S., G. Geoffrey, G. Michael (eds) Advances in Applied Microbiology. Academic Press, Somerset.

McDonald B.A., and C. Linde. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol. 40: 349-379.

Meyer M.C., C.J. Bueno, N.L. de Souza, and J.T. Yorinori. 2006. Effect of doses of fungicides and plant resistance activators on the control of Rhizoctonia foliar blight of soybean, and on Rhizoctonia solani AG1-IA in vitro development. Crop Prot. 25(8): 848-854.

Pauls, S.U., C. Nowak, M. Bálint, and M. Pfenninger. 2013. The impact of global climate change on genetic diversity within populations and species. Mol Ecol. 22: 925-946.

Ramos-Molina L.M., P.C. Ceresini, S.N.C. Vicentini, D.A.S. Pereira, G.I. Conceição, M.R. Silva-Herrera, and P.C. Santos. 2019. Potencial adaptativo de populações de Rhizoctonia solani AG-1 IA associadas ao arroz e à Urochloa brizantha ao estresse térmico. Summa Phytopatol 45(3): 320-325.

Schmitz H.K., C.A. Medeiros, I.R. Craig, and G. Stammler. 2014. Sensitivity of Phakopsora pachyrhizi towards quinone-outside-inhibitors and demethylation-inhibitors, and corresponding resistance mechanisms. Pest Manag Sci. 70(3): 378-388.

Willi Y., A. Frank, R. Heinzelmann, A. Kälin, L. Spalinger, and P.C Ceresini. 2011. The adaptive potential of a plant pathogenic fungus, Rhizoctonia solani AG-3, under heat and fungicide stress. Genetica 139(7): 903-908.

Yamori W., K. Noguchi, K. Hikosaka, and I. Terashima. 2010. Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiol. 152(1): 388-399.

Yang L.N., W. Zhu, E.J. Wu, C. Yang, P.H. Thrall, J.J. Burdon, L.P. Jin, L.P. Shang, and J. Zhan. 2016. Trade-offs and evolution of thermal adaptation in the Irish potato famine pathogen Phytophthora infestans. Mol Ecol 25(16): 4047-4058.

Youssef D.R., G.R. Souza, K.L. Nechet, and B.A. Halfeld-Vieira. 2012. Caracterização de isolados de Rhizoctonia associados à queima foliar em Roraima. Rev AgroAmbiente 6(2): 158-165.

Zala M., B.A. McDonald, J.B. De Assis, M.B. Ciampi, M. Storari, P. Peyer, and P.C Ceresini. 2008. Highly polymorphic microsatellite loci in the rice- and maize-infecting fungal pathogen Rhizoctonia solani anastomosis group 1 IA. Mol Ecol. 8(3): 686-689.

Zhan J., and B.A McDonald. 2011. Thermal adaptation in the fungal pathogen Mycosphaerella graminicola. Mol Ecol. 20(8): 1689-1701.



How to Cite

de Oliveira, S., Silva, T., Campos V., S., Moraes Ferraudo, G., Intra Moreira, S., Castro Ríos, K., & Ceresini, P. (2022). Adaptability of Rhizoctonia solani AG-1 IA for mancozeb sensitivity under temperature stress. Bioagro, 34(3), 301-310.