Germination and biomass partitioning in creole varieties of cowpea (Vigna unguiculata (L.) Walp.) under salinity conditions

Authors

DOI:

https://doi.org/10.51372/bioagro353.3

Keywords:

Electric conductivity, local variety, seed physiological quality

Abstract

Saline soils can limit seedling germination and growth of the crops. This research sought to identify whether the cowpea varieties Pingo-de-ouro and Coruja are tolerant to salinity in terms of germination and biomass partitioning. A completely randomized design in a 2 x 4 factorial arrangement, totaling eight treatments with four replications was used. The treatments consisted of two varieties of cowpea in addition to NaCl salinity with four levels of electric conductivity (0.0, 3.3, 6.6 and 9.9 dS∙m-1). The variables analyzed were percentage of germination (PG), first germination count (FGC), germination speed index (GSI), average germination time (AGT), percentage of seedling (PSB), shoot (PSHB), root (PRB) and cotyledon (PCotB) biomass, PCotB/PSB ratio and salinity tolerance index (STI). The Pingo-de-ouro variety showed tolerance to 3.3 dS∙m-1 displaying an increase in PSB and PSHB, while the Coruja variety tolerated 6.6 dS∙m-1 with a more significant investment in PRB. Both displayed no significant statistical reduction in percentage of G, FGC, GSI, AGT, and STI up to 3.3 dS∙m-1 for the Pingo-de-ouro variety and 6.6 dS∙m-1 for the Coruja one. Thus, those genetic materials can be used to breed tolerant plants. The present research also provides results for further studies at physiological, molecular, and field conditions.

Downloads

Download data is not yet available.

References

Adda, A., Z. Regagba, A. Latigui, and O. Merah. 2014. Effect of Salt Stress on α-amylase Activity, Sugars Mobilization and Osmotic Potential of Phaseolus vulgaris L. Seeds Var. ‘Cocorose’ and ‘Djadida’ During Germination. J. Biol. Sci. 4(5): 370-375.

Ayers, R.S. and D. Westcot. 1999. Qualidade de água na agricultura. Campina Grande: UFPB, FAO. 153 p.

Almeida, W.S., F.R.F. Belém, C.H.C. Bertini, M.S. Pinheiro, and E.M. Teófilo. 2011. Identificação de genótipos de feijão-caupi tolerantes a salinidade avaliada por meio de método multivariado. Ciência Rural 41(11): 1884-1889.

Almeida, W.S., F.R.B. Fernandes, C.H.C. Bertini, M.S. Pinheiro, and E.M. Teófilo. 2012. Emergência e vigor de plântulas de genótipos de feijão-caupí sob estresse salino. Rev. Bras. Eng. Agríc. Ambient. 16(10): 1047-1054.

Brasil. 2009. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. MAPA/ACS, Brasília. 399 p. https://n9.cl/5aow (retrived November 2022).

Carvalho, J.F., E.F.F. Silva, G.F. Silva, M.M. Rolim, and E.M.R. Pedrosa. 2016. Produção dos componentes Vigna unguiculata L. (Walp) irrigados com água salobra sob diferentes frações de lixiviação. Revista Caatinga 29(4): 966–975.

Duarte, G.L., N.F. Lopes, D.M. Moraes, and R.N. Silva. 2006. Physiological quality of wheat seeds submitted to saline stress. Rev. bras. Sementes 28(1): 122-126.

Esteves, B.S and M.S. Suzuki. 2008. Efeito da salinidade sobre as plantas. Oecol. Bras. 12: 662-679.

Farooq, M., N. Gogoi, M. Hussain, S. Barthakur, S. Paul, N. Bharadwaj et al. 2017. Effects tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem. 118: 199‐217.

Ferreira, A.C.T., Felito, R.A., Rocha, A.M., Carvalho, M.A.C and Yamashita, O.M. 2017. Water and salt stresses on germination of cowpea (Vigna unguiculata cv. BRS Tumucumaque) seeds. Rev. Caatinga 30(4): 1009-1016.

Ferreira, E. B., Cavalcanti, P. P and Nogueira, D. A. 2018. ExpDes.pt: Pacote Experimental Designs (Portuguese). R package version 1.2.0.

Freitas, T. G. G., Silva, P. S. L., Vale, J. C and Silva, E. M. 2016. Green bean yield and path analysis in cowpea landraces. Rev. Caatinga 29(4): 866-877.

Harrell, F.E. J. with contributions from Charles Dupont and many others. 2020. Hmisc: Harrell Miscellaneous. R package version 4.4-0.

Islam, M. M., Haque, M. S and Sarwar, A. G. 2019. Salt tolerance of cowpea genotypes during seed germination and seedling growth. J Bangladesh Agril Univ. 17(1): 39-44.

Kaneko, M., Itoh, H., Ueguchi-Tanaka, M., Ashikari, M and Matsuoka, M. 2002. The alpha-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiol. 128(4): 1264-1270.

Kubala, S., Wojtyla, Ł., Quinet, M., Lechowska, K., Lutts, S and Garnczarska, M. 2015. Enhanced expression of the proline synthesis gene P5CSAin relation to seed osmopriming improvement of Brassica napus germination under salinity stress. J Plant Physiol. 183: 1-12.

Labouriau, L.G.A. 1983. Germinação das sementes. Washington: Secretaria Geral da Organização dos Estados Americanos, 174 p.

Larré, C. F., Moraes, D. M and Lopes, N. F. 2011. Qualidade fisiológica de sementes de arroz tratadas com solução salina e 24-epibrassinolídeo. Rev. bras. Sementes, 33(1): 86-94.

Lima, C. J. G. S., Oliveira, F. A., Medeiros, J. F., Oliveira, M. K. T and Almeida Júnior, A. B. 2007. Resposta do Feijão Caupí à salinidade da água de irrigação. Rev. Verde Agroecologia Desenvolv. Sustentável 2(2): 79-86.

Maguire, J.D. 1962. Speeds of germination-aid selection and evaluation for seedling emergence and vigor. Crop Science 2(2): 176-177.

Medeiros, J. F., Hans, R., Gheyi, H. R., Costa, A. R. F. C., Halan, V. Q and Tomaz, V. Q. 2016. Manejo do solo-água-planta em área afetadas por sais. In: Manejo da Salinidade na Agricultura. In: Gheyi, Dias and Lacerda (eds). INCT Sal, Fortaleza, CE. pp. 319-333,

Nascimento, M. G. R., Alves, E. U., Silva, M. L. M and Rodrigues, C. M. 2017. Lima bean (Phaseolus lunatus L.) Seeds exposed to different salt concentrations and temperatures. Rev. Caatinga 30(3): 738-747.

Nunes, L. R. L., Pinheiro, P. R., Pinheiro, C. L., Lima, K. A. P and Dutra, A. S. 2019. Germination and vigor in seeds of the cowpea in response to salt and heat stress. Rev. Caatinga 32(1): 143-151.

Nunes, L. R. L., Pinheiro, P. R., Cabral, F. A. Z., Silva, J. B and Dutra, A. S. 2019a. Ascorbic acid of cowpea seeds under saline stress. J. Seed Sci. 41(4): 441-451.

Oliveira, F. A., Oliveira, M. K. T., Lima, L. A., Alves, R. C., Régis, L. R. L and Santos, S. T. 2017. Estresse salino e biorregulador vegetal em feijão caupí. Irriga 22(2): 314-329.

Oyetunji, O. J and Imade, F. N. 2015. Effect of different levels of NaCl an Na2SO4 salinity on dry matter and ionic contents of cowpea (Vigna unguiculata L. Walp.). Afr. J. Agric. Res. 10 (11): 1239-1243.

Predeepa, R. J and Ravindran, D. A. 2010. Nodule formation, distribution and symbiotic efficacy of Vicia faba L. under different soil salinity regimes. Emir. J. Food Agric. 22(4): 275-284.

Sá, F. V. S., Paiva, E. P., Torres, S. B., Brito, M. E. B., Nogueira, N. W. N., Frade, L. J. G and Freitas, R. M. O. 2016. Seed germination and vigor of different cowpea cultivars under salt stress. Com. Sci. 7(4): 450-455.

Taiz, L., Zeiger, E., Møller I. M and Murphy A. 2017. Fisiologia e Desenvolvimento Vegetal. Artmed, Porto Alegre.

Tang, B and M. Horikoshi and W. Li. 2016. ggfortify: Unified interface to visualize statistical results of popular R packages, The R Journal 8: 474-485.

Tavares, D.S., T.E. Kanarski Fernandes, Y. Larissa Rita, D.C. Rocha, B.F. Sant'Anna-Santos, and M.P. Gomes. 2021. Germinative metabolism and seedling growth of cowpea (Vigna unguiculata) under salt and osmotic stress. South African Journal of Botany 139: 399-408.

Published

2023-08-31

How to Cite

Alves de Andrade, F. H., Torres da Silva, R., de Queiroz Lopes, M. de F., Barbosa Neto, M. A., de Lima Ferreira, A. D. C., Batista Clemente, M. I., & Silva de Oliveira, E. (2023). Germination and biomass partitioning in creole varieties of cowpea (Vigna unguiculata (L.) Walp.) under salinity conditions. Bioagro, 35(3), 199-208. https://doi.org/10.51372/bioagro353.3