Host range in economically important fruit trees associated with foliar phytopathogens of peach (Prunus persica l).


  • Ángel R. Ceballos-Chávez Universidad Autónoma de Sinaloa, Facultad de Agricultura del Valle del Fuerte. Av. Japaraqui y Calle 16 S/N, CP. 81110, Juan José Ríos, Sinaloa México.
  • Glenda J. Lizárraga-Sánchez Universidad Autónoma de Occidente-UR Los Mochis. Blvd. Macario Gaxiola y Carretera Internacional, México 15, CP. 81216, Los Mochis, Sinaloa, México.
  • Karla Y. Leyva-Madrigal Universidad Autónoma de Occidente-UR Los Mochis. Blvd. Macario Gaxiola y Carretera Internacional, México 15, CP. 81216, Los Mochis, Sinaloa, México.
  • Diana M. Mc Caughey-Espinoza Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Blvd. Luis Encinas y Rosales, CP. 83000, Hermosillo, Sonora, México.
  • Leidy E. Chávez-García Universidad Tecnológica de la Tarahumara. Carretera Guachochi-Yoquivo, km. 1.5, Turuseachi, CP. 33180, Guachohi, Chihuahua, México.
  • Fernando A. Valenzuela- Escoboza Universidad Autónoma de Sinaloa, Facultad de Agricultura del Valle del Fuerte. Av. Japaraqui y Calle 16 S/N, CP. 81110, Juan José Ríos, Sinaloa México.
  • Blanca E. López-Valenzuela Universidad Autónoma de Sinaloa, Facultad de Agricultura del Valle del Fuerte. Av. Japaraqui y Calle 16 S/N, CP. 81110, Juan José Ríos, Sinaloa México.



fruit, fungi, inoculate, pathogenicity, severity


In Mexico, the presence of phytopathogenic fungi causes severe damage to peach (Prunus persica L.) fruits after harvest, causing a decrease in the export of processed products and in shelf life. The objective of this work was to describe the host range of foliar fungi in fruits of apple (Malus domestica Borkh), strawberry (Fragaria spp.), plum (Prunus domestica L.), pear (Pyrus communis L.) and quince (Cydonia oblonga Mill.) and on leaves of peach varieties. For the pathogenicity test, the spray technique was used and the diseases were assessed using the 5-degree severity scale from 0 to ≥75% of presence of symptoms on the fruit and from 10 to ≥60% for detached leaf and percentage of incidence. Conidia of Fusarium spp, Alternaria spp, Epicoccum spp, Collectotrichum spp and Monilinia spp. were inoculated from all the fruits and leaves of the yellow, prisco and white peach varieties, with seven replicates, leaving a control with sterile distilled water for each treatment. They were placed in a humid chamber under aseptic conditions, at 27°C ± 1, and were subjected to regimes of 14 hours of darkness and 10 hours of light for 4, 7, 10 and 12 days. Data were subjected to analysis of variance and Tukey's test for comparison of means (P≤0.05). The yellow variety of peach presented greater susceptibility to all fungi, which were pathogenic to the hosts with severity from 0 to 97.14 %.


Download data is not yet available.


Alvarado-Barrera, R., J.M. Pompa-García, J. Zúñiga-Vásquez y M. Jiménez-Casas. 2019. Spatial analysis of phenotypic variables in a clonal orchard of Pinus arizonica Engelm. in northern Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente 25(2): 185-199.

Benavides, M.E., V.F. Pinto y G. Pose. 2019. Alternaria species associated with apple and pear crops in the region of Alto Valle del Río, Argentina. Revista de Cultura Científica 17: 18-31.

Carraro, T. de A., R.R. Moreira, J. Gelain y L.L.M. De Mio. 2022. Etiology and epidemiology of diseases caused by Colletotrichum spp. in persimmon, apple, peach, and grapevine. Revista Anual de Patología de Plantas 28: 136–162.

Castello, G., F.A. Paglioni, G. Martin, M. Morelli y R. Manfrino. 2019. Prospección y patogenicidad de hongos patógenos para el control de carpocapsa en frutales. Investigación Joven 6(2): 43-43.

Dowling, M., N. Peres, S., Villani y G. Schnabel. 2020. Managing Colletotrichum on fruit crops: A complex challenge. Plant Disease 104(9): 2301-2316.

Dutta, P., M. Deb L., Debbarma, R.K., Patidar y M. Pathak. 2020. Monilinia fructicola (G. Winter) Honey as the first report of brown rot of peach (Prunus persica (L) Batsch.) from Meghalaya of North East India. Journal of Pharmacognosy and Phytochemistry 9(4): 449-452.

FAOSTAT. 2022. Food and Agriculture Organization of the United Nations (consulta de noviembre 6, 2022).

García, M.C.A., M. Acosta-Ramos, O. Vázquez-Martínez, M. Pérez-Sato, A. García, R.M. Acosta, M.O. Vázquez et al. 2017. Morphological, molecular and pathogenic diagnostic of fungi in lawn’s root and neck in Mexico. Revista Phyton 86: 258-264.

Gelain, J., N.A.Hamada y L.L.M. De Mio. 2022. Survival of pathogens after dormancy in apple tree twigs indicates potential risk as source of inoculum. Acta Scientiarum. Agronomy 44: 53816.

Gerardo-Lugo, S.S., J.M. Tovar-Pedraza, S.S.N. Maharachchikumbura, M.A. Apodaca-Sánchez, K.C. Correia, C.P. Sauceda-Acosta et al. 2020. Characterization of Neopestalotiopsis Species Associated with Mango Grey Leaf Spot Disease in Sinaloa, Mexico. Journal in Pathogens 9 (10): 788.1-17.

Hoyos, P.P y R.R.D. Zarate. 1985. Estudios etiológicos y epidemiológicos de la mancha blanca del "guanabano, Annona muricata L. en el valle del Cauca. Acta Agronomica 35(1) 81-92.

Hu, M.J., K.D. Cox, G. Schnabel y C.X. Luo. 2011 Monilinia species causing brown rot of peach in China. Journal PLoS ONE 6(9):2-14.

Hu, M.J., A. Grabke, y G. Schnabel. 2015. Investigation of the Colletotrichum gloeosporioides species complex causing peach anthracnose in South Carolina. Journal In Plant Disease 6: 797-805

Iwamoto, K., S. Takamatsu, y M. Yamamoto. 2019. Alternaria alternata causing black spot of peach produces a host-specific toxin. Journal of General Plant Pathology 85(5): 395-400.

Jakobija, I., B. Bankina, A. Klūga, A. Roga, E. Skinderskis, D. Fridmanis. 2022. The diversity of fungi involved in damage to japanese quince. Plants (11)19: 2572.

Kardam, V. K., A. Shukla, D.P. Sharma, y N. Kumar. 2021. Screening of germplasm of peach and nectarines against Taphrina deformans. Indian Phytopathology 74(3): 831-833.

Kumar, D., V. Ratan, A. Kumar, J.S. Kumar, J. Kumar, K. Pal y M. Kumar. 2021. Pathogenicity tests and antagonastic effect of bioagents on Fusarium oxysporum f. Sp. Lycopersici (FOL). The Pharma Innovation Journal 10(11): 1887-1891.

Lee, D. M., O. Hassan, y T. Chang. 2020. Identification, characterization, and pathogenicity of Colletotrichum species causing anthracnose of peach in Korea. journal in Mycobiology 48(3): 210-218.

Lin, S., N.J. Taylor y F. Peduto Hand. 2018. Identification and characterization of fungal pathogens causing fruit rot of deciduous holly. Plant Disease 102(12): 2430-2445.

López, Z.S. P. y Z.J. Castaño. 2019. Manejo integrado del mal de Panamá [Fusarium oxysporum Schlechtend.: Fr. sp. cubense (E.F. SM.) W.C. Snyder y amp; H.N. Hansen]: una revisión. Revista U.D.C.A Actualidad y amp; Divulgación Científica 22: 1-13.

Luo, C.X., G. Schnabel, M. Hu, y A. De Cal. 2022. Global distribution and management of peach diseases. Journal In Phytopathology Research 4(30): 1-15.

Moreno, L.J.P., D.A.A. Prado y S.Y.A Herrera. 2018. Hongos fitopatógenos asociados a enfermedades foliares de Cattleya, Miltoniopsis y Oncidium en víveros de fusagasugá (Cundinamarca, Co). Revista de Fitopatología Colombiana 42(1): 13-16.

Özer, N., H.I. Uzun, B. Aktürk, C. Özer, M. Akkurt, y S. Aydın. 2021. Resistance assessment of grapevine leaves to downy mildew with sporulation area scoring. European Journal of Plant Pathology 160 (2): 337-348.

Ozkilinc, H., G. Yildiz, E. Silan, K. Arslan, H. Guven, H.H. Altinok, R. Altindag y M.R. Durak. 2020. Species diversity, mating type assays and aggressiveness patterns of Monilinia pathogens causing brown rot of peach fruit in Turkey. European Journal of Plant Pathology 157(4): 799-814.

Porras, F.D., P.C. Anchondo, A.A. González, M.M.A. Piñón y A.A. Anchondo. 2021. Diagnosis, technology transfer and technical support for the development of family production units in the municipality of Morelos, Chihuahua. Revista Biologica Agripecuaria Tuxpan 9 (2): 62-71.

Ruta, C., M. Lambardi, y E.A. Ozudogru. 2020. Biobanking of vegetable genetic resources by in vitro conservation and cryopreservation. Journal in Biodiversity and Conservation 29(13): 3495-3532.

SIAP. 2022. Servicio de Información Agroalimentaria y Pesquera. Secretaría de Agricultura y Desarrollo Rural. (consulta de noviembre 6, 2022).

Taguiam, J. D., E. Evallo y M.A. Balendres. 2021. Epicoccum species: ubiquitous plant pathogens and effective biological control agents. European Journal of Plant Pathology 159: 713-725

Tan, Q., G. Schnabel, C. Chaisiri, L.F. Yin, W.X. Yin y C.X. Luo. 2022. Colletotrichum Species Associated with Peaches in China. Journal of Fungi 8(3): 313.

Udhayakumar, R., S. Usharani y A. Muthukumar. 2019. Pathogenicity variation, morphological and cultural characteristic of Colletotrichum gloeosporioides isolates. Plant Archives 19(1): 425-430.

Wu, S., C. Zhen, K. Wang y H. Gao. 2019. Effects of Bacillus Subtilis CF‐3 VOCs combined with heat treatment on the control of Monilinia fructicola in peaches and Colletotrichum gloeosporioides in litchi fruit. Journal of Food Science 84(12): 3418-3428.

Yin, L., S. Zhang, J. Du, X. Wang, W. Xu, y C. Luo. 2021. Monilinia fructicola on loquat: An old pathogen invading a new host. Journal of Integrative Agriculture 20(7) 2009-2014.

Zhang, S., D. Xiang, C. Sun, K. Han, T. Li, J. Zhou y B. Xu. 2022. Morphological and molecular identification of peach brown rot disease in tibet and exploration of the biocontrol efficiency of Trichoderma. Journal of Fungi 8(11): 1174.

Zhu, J.Z., C.X. Li, C.J. Zhang, Y. Wang, X.G. Li, y J. Zhong. 2019. Fusarium solani causing fruit rot of peach (Prunus persica) in Hunan, China. Crop Protection 122: 171-174.



How to Cite

Ceballos-Chávez, Ángel R., Lizárraga-Sánchez, G. J., Leyva-Madrigal, K. Y., Mc Caughey-Espinoza, D. M., Chávez-García, L. E., Valenzuela- Escoboza, F. A., & López-Valenzuela, B. E. (2023). Host range in economically important fruit trees associated with foliar phytopathogens of peach (Prunus persica l). Bioagro, 35(3), 259-270.