Interaction of electrical conductivity and humic acids on yield and nutraceutical quality of Capsicum annuum L. fruits cv Arista

Authors

DOI:

https://doi.org/10.51372/bioagro361.7

Keywords:

Antioxidant capacity, capsaicin, flavonoids, phenols, yield components

Abstract

The humic substances are an alternative to reduce excessive doses of fertilizers in cultivated species. The objective was to evaluate the effect of levels of electrical conductivity (EC) of the nutrient solution and doses of humic acids (HA) on the yield and quality of chili fruits (Capsicum annuum L.). The design was completely randomized with a bifactorial arrangement with 12 treatments and 15 replications. The factor one was the levels of EC of nutrient solutions (1.0, 1.5 and 2.0 dS·m-1); the factor two was the doses of HA (0, 2.5, 3.75, and 5.0 mL·L-1). The yield, length, equatorial diameter, epicarp thickness, firmness, weight, and number of fruits were evaluated. The nutraceutical quality was also evaluated (total phenols, capsaicin, antioxidant capacity and total flavonoids). The results showed that the yield, length, equatorial diameter, weight, and number of fruits showed differences between EC, while, yield, length, thickness of the pericarp, weight and number of fruits showed differences for HA. The fruit firmness showed differences in the interaction EC×HA. Most of the variables showed higher values in 1.0 dS·m-1 of EC and 2.5 of HA; the firmness was higher in 2.0 dS·m-1 of EC and 3.75 mL·L-1 of HA. The content of phenols, flavonoids, antioxidants, and capsaicin showed differences between EC, while flavonoids did not show differences for HA. The four variables showed differences in the interaction of the factors, with increases of 1.0 and 1.5 dS·m-1 of EC and 5.0 mL·L-1 of HA. The HA are an alternative to increase the yield of chili fruits and their nutraceutical quality.

Downloads

Download data is not yet available.

References

Aguirre, H.E., y O.V. Muñoz. 2015. El chile como alimento. Ciencia 66(3): 16-23.

Akladious, S.A., y H.I. Mohamed. 2018. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum ) plants grown under salt stress. Scientia Horticulturae 236: 244-250.

Al-Harbi, A., A. Hejazi, y A. Al-Omran. 2017. Responses of grafted tomato (Solanum lycopersiocon L.) to abiotic stresses in Saudi Arabia. Saudi Journal of Biological Sciences 24(6): 1274-1280.

Ali, A.Y.A., M.E.H. Ibrahim, G. Zhou, G. Zhu, A.M.I. Elsiddig, M.S. E. Suliman et al. 2022. Interactive impacts of soil salinity and jasmonic acid and humic acid on growth parameters, forage yield and photosynthesis parameters of Sorghum plants. South African Journal of Botany 146: 293-303.

Aminifard, M.H., H. Aroiee, M. Azizi, H. Nemati, y H.Z.E. Jaafar. 2012. Effect of humic acid on antioxidant activities and fruit quality of hot pepper (Capsicum annuum L.). Journal of Herbs, Spices and Medicinal Plants 18(4): 360-369.

Arancon, N.Q., C.A. Edwards, S. Lee, y R. Byrne. 2006. Effects of humic acids from vermicomposts on plant growth. European Journal of Soil Biology 42(1): S65-S69.

Athar, H.R., A. Khan, y M. Ashraf. 2008.Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and Experimental Botany 63(1-3): 224-231.

Brand-Williams, W., M.E. Cuvelier, y C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28(1): 25-30.

Cisneros-Pineda, O., L.W. Torres-Tapia, L.C. Gutierrez-Pacheco, F. Contreras-Martin, T. Gonzalez-Estrada, y S.R. Peraza-Sanchez. 2007. Capsaicinoids quantification in chili peppers cultivated in the state of Yucatan, Mexico. Food Chemistry 104(4): 1755-1760.

Cruz-Crespo, E., M.T. Sumaya-Martínez, Á. Can-Chulim, J. Pineda-Pineda, R. Bugarín-Montoya, y G. Aguilar-Benítez. 2015. Quality, bioactive compounds, and antioxidant activity of serrano chili peppers cultivated in volcanic rock-vermicompost and nutrient solutions. Ciencia e Investigación Agraria 42(3): 375-384.

Delgado, R.G., I.M.A. Inzunza, C.M.M. Villa, V.E.A. Catalán, y L.A. Román. 2014. Evaluación de tecnología para maximizar la producción de chile serrano en la Region Lagunera. Revista Mexicana de Ciencias Agricolas 5(8): 1557-1565.

Denre, M., P.K. Bandopadhyay, A. Chakravarty, S. Pal, y A. Bhattacharya. 2014. Effect of foliar application of humic acid, zin and boron on biochemical changes related to productivity of pungent pepper (Capsicum annuum L.). African Journal of Plant Science 8(6): 320-335.

Du, G., M. Li, F. Ma, y D. Liang. 2009. Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chemistry 113(2): 557-562.

Esparza, R.J.R., B.M. Stone, C. Stushnoff, E. Pilon-Smits, y A.P. Kendall. 2006. Effect of ascorbic acid applied by two hydrocooling methods on physical and chemical propertier of green leaf lettuce stored at 5 °C. Journal of Food Science 71(3): 270-276.

Espinosa-Palomeque, B., P. Cano-Ríos, L. Salas-Pérez, G. González-Rodríguez, A. Reyes-González, A.V. Ayala-Garay, y P. Preciado-Rangel. 2020. Vermicompost on the production and nutraceutical quality of jalapeño pepper fruits (Capsicum annuum L.). Terra Latinoamericana 38(4): 795-803.

Ghaderimokri, L., E. Rezaei-Chiyaneh, M. Ghiyasi, M. Gheshlaghi, M.L. Battaglia, y K.H.M. Siddique. 2022. Application of humic acid and biofertilizers changes oil and phenolic compounds of fennel and fenugreek in intercropping systems. Scientific Reports 12(1): 5946.

Hernández-Pérez, O.I., L.A. Valdez-Aguilar, I. Alia-Tejacal, A.D. Cartmill, y D.L. Cartmill. 2019. Tomato fruit yield, quality, and nutrient status in response to potassium: calcium balance and electrical conductivity in the nutrient solution. Journal of Soil Science and Plant Nutrition 20: 484-492.

Johnson, C.D., y D.R. Decoteaun. 1996. Nitrogen and potassium fertility affects Jalapeño pepper plant growth, pod yield, and pungency. HortScience 31(7): 1119-1123.

Karakurt, Y., H. Unlu, H. Unlu, y H. Padem. 2009. The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agriculturae Scandinavica, Section B - Plant Soil Science 59(3): 233-237.

Kim, G.D., Y.S. Lee, J.Y. Cho, Y.H. Lee, K.J. Choi, Y. Lee, et al. 2010. Comparison of the content of bioactive substances and the inhibitory effects against rat plasma oxidation of conventional and organic hot peppers (Capsicum annuum L.). Journal of Agricultural and Food Chemistry 58(23): 12300-12306.

Klokić, I., I. Koleška, D. Hasanagić, S. Murtić, B. Bosančić, y V. Todorović. 2020. Biostimulants’ influence on tomato fruit characteristics at conventional and low-input NPK regime. Acta Agriculturae Scandinavica, Section B -Soil & Plant Science 70(3): 233-240.

López-Espinosa, S.T., A. Moreno-Reséndez, P. Cano-Ríos, N. Rodríguez-Dimas, V. Robledo-Torres, y C. Márquez-Quiroz. 2013. Organic fertilization: an alternative to prodece jalapeño pepper under greenhouse conditions. Emirates Journal of Food and Agriculture 25(9): 666-672.

Mardanluo, S., M.K. Souri, y M. Ahmadi. 2018. Plant growth and fruit quality of two pepper cultivars under different potassium levels of nutrient solutions. Journal of Plant Nutrition 41(12): 1604-1614.

Medina-Lara, F., I. Echevarría-Machado, R. Pacheco-Arjona, N. Ruíz-Lau, A. Guzmán-Antonio, y M. Martinez-Estevez. 2008. Influence of nitrogen and potassium fertilization on fruiting and capsaicin content in habanero pepper (Capsicum chinense Jacq.). HortScience 43(5): 1549-1554.

Mena-Violante, H.G., A. Cruz-Hernández, O. Paredes-López, M.Á. Gómez-Lim, y V. Olalde-Portugal. 2009. Cambios relacionados con textura de frutos y mejoramiento de la vida de anaquel por la inoculación de raíces de tomate con Bacillus subtilis BEB-13BS. Agrociencia. 43(6): 559-567.

Moreno-Reséndez, A., R. Hernández-García, N. Rodríguez-Dimas, J. L. Reyes-Carrillo, C. Márquez-Quiroz, y P. Preciado-Rangel. 2015. Development of Serrano pepper in vermicompost:perlite substrates under shade net conditions. Emirates Journal of Food and Agriculture 27(12): 897-902.

NMX-FF-025-SCFI. 2014. Norma Oficial Mexicana NMX- FF- 025- SCFI – 2014. Productos alimenticios no industriali-zados para consumo humano - chile fresco (Capsicum spp) - especificaciones. https://n9.cl/n5xwa (consulta marzo, 2023).

Paradikovic, N., T. Vinkovic, I. Vinkovic Vrcek, I. Zuntar, M. Bojic, y M. Medic-Saric. 2011. Effect of natural biostimulants on yield and nutritional quality: an example of sweet yellow pepper (Capsicum annuum L.) plants. Journal of the Science of Food and Agriculture 91(12): 2146-2152.

Pérez-Vazquez, E.L., J.M. Gaucin-Delgado, S.C. Ramírez-Rodríguez, M. Sariñana-Navarrete, S.G. Zapata, y E. Zuñiga-Valenzuela. 2020. Conductividad eléctrica de la solución nutritiva efecto en el rendimiento y la calidad nutracéutica de pimiento morrón. Revista Mexicana de Ciencias Agricolas 11(7): 1669-1675.

Preciado-Rangel, P., A. Andrade-Sifuentes, E. Sánchez-Chavez, L. Salas-Pérez, M. Fortis-Hernández, E. O. Rueda-Puente, y J. L. García-Hernández. 2019. Influencia del potasio en el contenido nutracéutico y de antioxidantes en pimiento serrano (Capsicum annuum L.) Agrociencia 53(4): 581-591.

Preciado-Rangel, P., E.O. Rueda Puente, L.A. Valdez-Aguilar, J.J. Reyes-Pérez, M.Á. Gallegos-Robles, y B. Murillo-Amador. 2021. Conductividad eléctrica de la solución nutritiva y su efecto en compuestos bioactivos y rendimiento de pimiento morrón (Capsicum annuum L.). Tropical and Subtropical Agroecosystems 24(2): 52.

Qin, K., y D. I. Leskovar. 2020. Humic substances improve vegetable seedling quality and post-transplant yield performance under stress conditions. Agriculture 10(7): 254.

Reyes-Pérez, J.J., M. Rivero-Herrada, F. C.J. Andagoya, F.A. Beltrán-Morales, L. G. Hernández-Montiel, A.E. Garcia-Liscano, y F.H. Ruiz-Espinoza. 2021a. Emergencia y características agronómicas del Cucumis sativus a la aplicación de quitosano, Glomus cubense y ácidos humicos. Biotecnia 23(3): 38-44.

Reyes-Pérez, J.J., M. Rivero-Herrada, A. E. Solórzano-Cedeño, F.d.J. Carballo-Méndez, G. Lucero-Vega, y F.H. Ruiz-Espinoza. 2021b. Aplicación de ácidos húmicos, quitosano y hongos micorrízicos como influyen en el crecimiento y desarrollo de pimiento. Terra Latinoamericana 39: 1-13.

Schiavon, M., D. Pizzeghello, A. Muscolo, S. Vaccaro, O. Francioso, y S. Nardi. 2010. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). Journal of Chemical Ecology 36: 662-669.

Shehata, A.S., E.M.M. Saad, A.M. Saleh, y S.A. Atala. 2019. Effect of some bioestimulants materials on growth, yield, quality and storability of sweet pepper. Annals of Agricultural Science, Moshtohor 57(1): 77-88.

Steiner, A.A. 1984. The universal nutrient solution. In: Proceeding of IWOSC 1984 6th International Congress on Soilless Culture; p. 633-650. Wageningen, The Netherlands.

Tadesse, T., E.W. Hewett, M.A. Nichols, y K.J. Fisher. 2002. Changes in physicochemical attributes of sweet pepper cv. Domino during fruit growth and development. Scientia Horticulturae 93(2): 91-103.

Valdez, S.Y.M., S.E. Olivares, A.R.E. Vázquez, J.R. Esparza-Rivera, P. Preciado-Rangel, R.D. Valdez-Cepeda, y J.L. Garcia-Hernández. 2016. Calidad y concentración de capsaicinoides en genotipos de chile serrano (Capsicum annuum L.) producido bajo fertilización orgánica. Phyton. Revista Internacional de Botánica Experimental 85(1): 21-26.

Winter, C.K., y S.F. Davis. 2006. Organic Foods. Journal of Food Science 71(9): R117-R124.

Zhishen, J., T. Mengcheng, y W. Jianming. 1999. The determination of flavonoid contents in mulberrey and their scavenging effects on superoxide radicals. Food Chemistry 64(4): 555-559.

Published

2024-01-04

How to Cite

Preciado-Rangel, P., Murillo-Amador, B., Hernández-Montiel, L. G., Espinoza-Palomeque, B., Parra-Terraza, S., & Rivas-García, T. (2024). Interaction of electrical conductivity and humic acids on yield and nutraceutical quality of Capsicum annuum L. fruits cv Arista. Bioagro, 36(1), 71-84. https://doi.org/10.51372/bioagro361.7

Issue

Section

Artículos