Prediction of single-cross hybrids of maize based on genomic information of the lines
DOI:
https://doi.org/10.51372/bioagro363.1Keywords:
Genetic distances, hybridization, microsatellites, Zea maysAbstract
The genetic divergence of the parents of a hybrid plays an important role in the expression of heterosis of its progeny. The objective of this research was to predict hybrid combinations using microsatellite-type molecular markers of higher heterotic behavior based on divergence between pairs of lines. Thirty-seven maize lines were genotyped for genetic profiling using microsatellites, with which Rogers' modified genetic distances (GD) were estimated. Forty-six hybrids were generated and evaluated in two locations in Tamaulipas, Mexico, during the autumn-winter 2020 seasons, under a randomized complete block design with three replications. Analysis of variance and linear regression were performed with genetic distances between parent lines as GD versus yield (GRY) and its components as dependent variables. Significance was detected between locations and genotypes for all variables. The superior hybrid in grain yield was LEARB9 × UAY113 with 9.1 t·ha-1. Linear regression analysis revealed a low association, although with significant differences (P≤0.01) between GD vs GRY and cob shelling percentage, with regression coefficients of 4.77 t·ha-1, and 7.13 %, with coefficients of determination R2= 0.14 and 0.06. For GD vs plant height and cob height, a significant (P≤0.01) moderate relationship, regression coefficients of 84.15 and 42.39 cm and coefficients of determination R2 = 0.28 and 0.26. It is concluded that SSRs can be used as tools in traditional hybridization schemes.
Downloads
References
Al-Ashkar, I., M. Alotaibi, Y. Refay, A. Ghazy, A. Zakri y A. Al-Doss. 2020. Selection criteria for high-yielding and early-flowering bread wheat hybrids under heat stress. Plos One 15: e0236351.
Balestre, M., J.C. Machado, J.L. Lima, J.C. Souza y Filho L.N. 2008. Genetic distance estimates among single cross hybrids and correlation with specific combining ability and yield in corn double cross hybrids. Genetics and Molecular Research 7(1): 65-71.
Beyene, Y., M. Gowda, M. Olsen, K.R. Robbins, P. Pérez-Rodriguez, G. Alvarado. et al. 2019. Empirical comparison of tropical maize hybrids selected through Genomic and phenotypic selections. Frontiers in Plant Science 10: 1502.
Bruel, D.C., P.V. Carpentieri, A.C. Gerage, J.N.S. Fonseca, P.C.E. Cavenaghi, C.F. Ruas. et al. 2006. Genetic distance estimated by RAPD markers and its relationship with hybrid performance in maize. Pesquisa Agropecuaria Brasileira 41:1491-1498.
CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo). 2006. Protocolos de Laboratorio. Laboratorio de Genética Molecular Aplicada. Tercera edición. CIMMYT. México D.F. 92 p.
Crossa, J., P. Pérez, J. Hickey, J. Burgueño, L. Ornella, J. Cerón-Rojas. et al. 2014. Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112(1): 48-60.
Dermail, A., B. Suriharn, S. Chankaew, J. Sanitchon y K. Lertrat. 2020. Hybrid prediction based on SSR-genetic distance, heterosis and combining ability on agronomic traits and yields in sweet and waxy corn. Scientia Horticulturae 259: 108817.
Dhliwayo, T., K. Pixley, A. Menkir y M. Warburton. 2009. Combining ability, genetic distances, and heterosis among elite CIMMYT and IITA tropical maize inbred lines. Crop Science 49(4): 1201-1210.
Falconer, D.S. 1989. Introduction to quantitative genetics. 3° ed. New York, Longman. 340 p.
Falconer, D.S. y T.F.C. Mackay. 1996. Introduction to Quantitative Genetics. 4th ed. Longman. Essex, England.
Filho, A.C., N.D. Ribeiro, R.C.P. Reis, J.R. Souza y E. Jost. 2008. Comparação de métodos de agrupamento para o estudo da divergencia genética em cultivares de feijão. Ciência Rural 38: 2138-2145.
Geng, X., Y. Qu, Y. Jia, S. He, Z. Pan, L. Wang y X.M. Du. 2020. Assessment of heterosis based on parental genetic distance estimated with SSR and SNP markers in upland cotton (Gossypium hirsutum L.). Research Square 1: 22.
Gupta, S.K., T. Nepolean, C.G. Shaikh, K. Rai, C.T. Hash, R.R. Das y A. Rathore. 2018. Phenotypic and molecular diversity-based prediction of heterosis in pearl millet (Pennisetum glaucum L. (R.) Br.). The Crop Journal 6: 271-281.
Ghosh, A., P.K. Das, A. Ghosh y S. Kundagrami. 2018. Heterosis, potence ratio and genetic distance for yield and yield contributing traits in single cross maize hybrids. Maydica 63(1): 1-9.
Ghosh, A., V. Subbar, A. Roy, A. Ghosh y S. Kundagrami. 2014. Genetic variability and character association of grain yield components in some inbred lines of maize (Zea mays L.). Journal of Agroecology and Natural Resource Management 12: 34-39.
Habid, A.M., M. Sharma, S. Punya, R.K. Salgotra y U. Kiran. 2019. Analysis of allelic differentiation and prediction of suitable parents among Brassica juncea L. genotypes using microsatellite markers. International Journal of Current Microbiology and Applied Sciences 8: 3071-3081.
Hoecker, N., B. Keller, H.P. Piepho y F. Hochholdinger. 2006. Manifestation of heterosis during early maize (Zea mays L.) root development. Theoretical and Applied Genetics 112: 421-429.
Lobato-Ortiz, R., J.D. Molina-Galán, J.J. López-Reynoso, J.A. Mejía-Contreras y D. Reyes-López. 2010. Criterios para elegir el mejor probador de la aptitud combinatoria general para rendimiento de grano de líneas autofecundadas de maíz. Agrociencia 44(1): 17-30.
Márquez, S.F. 1988. Genotecnia Vegetal. Métodos, Teoría, Resultados. Tomo II. A.G.T. Eds. S.A. México, D.F.
Mohammadi, S.A., B.M. Prasanna, C. Sudan y N.N. Singh. 2008. SSR heterogenic patterns of maize parental lines and prediction of hybrid performance. Biotechnolology & Biotech- nological Equipment 22(1): 541-547.
Morata, M.M., D.A. Presello, M.P. González y E. Frutos. 2006. Aptitud combinatoria para rendimiento entre líneas de maíz derivadas de nuevas fuentes de resistencia al Mal de Río Cuarto. Revista de la Facultad de Agronomía, La plata 106(1): 69-83.
Ni, J., P.M. Colowit y D.J. Mackill. 2002. Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Science 42(2): 601-607.
Oliboni. R., M.V. Faria, M. Neumann, G.M. Battistelli, R.G. Tegoni y J.T.V. Resende. 2012. Genetic divergence among maize hybrids and correlations with heterosis and combining ability. Acta Scientiarum Agronomy 34: 37-44.
Patil, S.K., S.K. Gupta, B. Marathi, S. Danam, R. Thatikunta, A. Rathore. et al. 2020. African and asian origin pearl millet populations: genetic diversity pattern and its association with yield heterosis. Crop Sciencie 60: 3035- 3048.
Rohlf, F.J. 2009. NTSYSpc: Numerical Taxonomy System. Ver. 2.21c. Exeter Software: Setauket: New York.
Ruíz-Ramírez, S., R. Hernández-Martínez, M. Velázquez-Martínez, F.J. Hernández-Guzmán, U. Aranda-Lara y M.A. Valdez-Hernández. 2024. Sistema de apareamiento para la producción y calidad de semillas en dos híbridos de maíz. Bioagro 36(2): 175-182.
Soni, K.S., V.K. Yadav, V.P. Bhadana, M.C. Yadav y R.M. Sundaram. 2017. Prediction of heterosis using hypervariable microsatellite markers in tropical japonica × indica rice hybrids. International Journal of Current Microbiology and Applied Sciences 6: 1419- 1427
Schrag, T.A, J. Möhring, A.E. Melchinger, B. Kusterer, B.S. Dhillon, H.P. Piepho y M. Frisch. 2010. Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Theoretical Applied Genetics 120(2): 451-461.
Shull, G.H. 1948. What is "heterosis"? Genetics 33(5): 439.
Tomkowiak, A., J. Bocianowski, B.M. Kwiatek y P.L. Kowalczewski. 2020. Dependence of the heterosis effect on genetic distance, determined using various molecular markers. Open Life Sciences 15(1):1-11.
Valadez, E. y G. Kahl. 2000. Huellas de ADN en Genomas de Plantas: Teoría y Protocolos de Laboratorio. Ed. Mundi Prensa. México. D.F. 147 p.
Warburton, M.L, X. Xianchun, J. Crossa, J. Franco, A.E. Melchinger, M. Frisch. et al. 2002. Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Science 42(6): 1832-1840.
Wright, S. 1978. Evolution and the Genetic of Populations. Vol. 4. Variability within and among Natural Populations. University of Chicago Press. Chicago, USA.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Rosendo Hernández-Martínez, Amalio Santacruz-Varela, César A. Reyes-Méndez, Higinio López-Sánchez, Ricardo Lobato-Ortiz, Fernando Castillo-González
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Rights of the author/s are from the year of publication
This work is under the license:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors not necesarily reflect the position of the publisher or UCLA. The total or partial reproduction of the texts published in this journal is authorized, as long as the complete source and the electronic address of this journal is cited. Authors have the right to use their articles for any purpose as long as it is done for non-profit purposes. Authors can publish the final version of their work on internet or any other medium, after it has been published in this journal.
Bioagro reserves the right to make textual modifications and technical adjustments to the figures of the manuscripts, in accordance with the style and specifications of the journal.