Growth of peaches at three altitudes in the Santander mountains of Northeastern Colombia

DOI:

https://doi.org/10.51372/bioagro363.5

Keywords:

Fruit roundness index, mixed nested longitudinal model, Prunus persica

Abstract

A study was conducted in the high tropics in the province of Pamplona, Colombia, with the objective of evaluating the growth of peach, Jarillo variety, under three different altitudes (1670, 1870, and 2170 masl). A total of eight trees were sampled per altitude for the purposes of this study. Ten fruits were taken from the middle third, and their mass was measured as follows: fresh and dry from the fruit and fruit pulp, pulp-seed ratio, and the roundness index during the three stages of development after defoliation. A multivariate analysis of variance and a nested longitudinal mixed model were employed to analyze the total fresh mass from three altitudes. The simple effects of altitude and the phenological stages and their interaction were found to be significant when the nested structure of the random effects, fruits nested in trees, and trees in altitudes were incorporated. The effects of time and altitude demonstrated a significant interaction for all variables. In all cases, 1670 masl was the altitude which had the highest fresh mass and the pulp-seed relationship, which it allowed a higher percentage of pulp from harvested fruits for agro-industrial processes. The pattern of relationship between fruit-associated variables as a function of days after defoliation was explained using a second-order polynomial regression model.

Downloads

Download data is not yet available.

References

AGRONET (Red de Información y Comunicación del Sector Agropecuario Colombiano). 2024. Results of the municipal agricultural evaluations of the year 2017. Bogotá, https://n9.cl/bk9gqs (retrieved Feb. 6, 2017).

Aular, J. and M. Cásares. 2019. Características de frutos de durazneros provenientes de El Peñón de Gabante, estado Aragua, Venezuela. Bioagro 31(2): 113-122.

Bajpai, P., A. Warghat, A. Yadav, A. Kant, R. Srivastava and T. Stobdan. 2015. High phenotypic variation in Morus alba L. along an altitudinal gradient in the Indian trans- Himalaya. Journal of Mountain Science 12(2): 446-455.

Campos, T. De J. 2013. Especies y variedades de hoja caduca en Colombia. In: D. Miranda, G. Fischer, C. Carranza (eds.). Los frutales caducifolios en Colombia. Situación actual, sistemas de cultivo y plan de desarrollo. Offset Graphical Editors. Bogotá. pp. 47-64.

Cancino, S., G. Cancino and E. Quevedo. 2019. Factores determinantes de la rentabilidad económica del cultivo de durazno en la Provincia de Pamplona, Norte de Santander, Colombia. Revista Espacios 40(13): 18.

Carranza, C. and D. Miranda. 2013. Zonificación actual de los sistemas de producción de caducifolios en Colombia. In: D. Miranda, G. Fischer, C. Carranza (eds.). Los frutales caducifolios en Colombia. Situación actual, sistemas de cultivo y plan de desarrollo. Offset Graphical Editors. Bogotá. pp. 67-86.

De La Bruna, E. and A. Moreto. 2011. Development of two pêssego fruits 'Aurora' and nectarine 'Sunraycer' not south of Santa Catarina. Revista Brasileira de Fruticultura (Special): E485-492.

Ding, J. and O. Nilsson. 2016. Molecular regulation of phenology in trees-because the seasons they are a-changin’. Current Opinion in Plant Biology 29: 73-79.

Fadón, E., M Herrero, B. Guerrero, M. Guerra and J. Rodrigo. 2020. Chilling and heat requirements of temperate stone fruit trees (Prunus sp.). Agronomy 10(409): 1-32.

Fadón, E., M. Herrero and J. Rodrigo. 2015. Flower development in sweet cherry framed in the BBCH scale. Scientia Horticulturae 192: 141-147.

FAOSTAT (Food and Agriculture Organization of the United Nations. Statistics Division). 2021. https://n9.cl/jcz5yy (retrieved Oct. 6, 2021).

Friendly, M. and M. Sigal. 2020. Visualizing tests for equality of covariance matrices. The American Statistician 74(2): 144-155.

Guo, J., K. Cao, Y. Li, J. Yao, C. Deng, Q. Wang et al. 2018. Comparative transcriptome and microscopy analyses provide insights into flat shape formation in peach (Prunus persica). Frontiers in Plant Science 8: 2215.

Hernández-Mora, J., D. Micheletti, M. Bink, E. Van De Weg, C. Cantín, N. Nazzicari et al. 2017. Integrated QTL detection for key breeding traits in multiple peach progenies. BMC Genomics 18: 404.

Huang, X., C. Wang, Y. Zhao, C. Sun and D. Hu. 2021. Mechanisms and regulation of organic acid accumulation in plant vacuoles. Horticulture Research 8: 227.

IGAC (Instituto Geográfico Agustín Codazzi). 2011. General Study of Soils and Land Zoning from the Department of Norte de Santander. Bogotá.

Jana, B. 2021. Scientific cultivation of low chill peach [Prunus persica (L) Batsch.] in north eastern plateau and hill regions. Biotica Research Today 3(8): 687-690.

Lisandru, T., A. Füstös, V. Miter and A. Dumitras. 2017. Sweet cherry (Prunus avium L.) and peach (Prunus persica L.) phenological growth stages according to BBCH scale. Bulletin UASVM Horticulture 74(1): 65-67.

Martínez, J., I. Chairez-Hernández, J. Gurrola-Reyes, J. Proal-Nájera, M. González- Guereca and E. Castellanos-Pérez. 2017. Growth models of peach fruit P. persica (L) in three handling systems. Interciencia 42(9): 597-602.

Matias, R., C. Bruckner, D. Silva, P. Carneiro and J. Oliveira. 2017. Adaptability and stability of peach and nectarine cultivars in subtropical climate. Ceres 64(5): 516-522.

Minasny, B., B. Malone and A. Mcbratney. 2012. Digital soil assessments and beyond. CRC press. London.

Morais, K., D. Xavier, D. Da Silva, J. Oliveira and C. Bruckner. 2017. Physical and chemical evaluation of sixteen peach cultivars during three harvests. Revista Engenharia na Agricultura 25(2): 157-163.

Nogueira, P., B. De Sousa, M. Tadeu, E. Tadeu, R. Pio and V. Rios. 2017. Peach cultivars from tropical regions: characterization and processing potential. Ciência Rural 47(12): 1-6.

Pinzón, E., A. Cruz and G. Fischer. 2014. Aspectos fisiológicos del duraznero (Prunus persica (L.) Batsch) en el trópico alto. Una revisión. Revista U.D.C.A Actualidad y Divulgación Científica 17(2): 401-411.

Quevedo, E., G. Cancino and A. Barragán. 2017a. Regression models for the estimation of the dry weights of organs and the limbo area of the peach variety Jarillo. Revista U.D.C.A. Actualidad y Divulgación Científica 20(2): 299-310.

Quevedo, E., A. Darghan and G. Fischer. 2017b. Classification of morphological variables of the peach tree (Prunus persica L. Batsch) 'Jarillo' in the Colombian mountain of Santander by linear discriminant analysis. Revista Colombiana de Ciencias Hortícolas 11(1): 39-47.

Reig, G., L. Cisneros-Zevallos, G. Costa and C. Crisosto. 2023. Components composition and nutritional and health benefits. In: G. Manganaris, G. Costa, C. Crisosto (eds.). Peach. Cabi. pp. 226-260.

Romeu, J.F., M. Sánchez and J. García- Brunton. 2015. Potential productivity evolution of flat peach cultivars (Prunus persica var. Platycarpa) grown in different climatic conditions of southeast of Spain. Scientia Horticulturae 197: 687-696.

Sarmiento-Soler, A., P. Vaast, M. Hoffmann, L. Jassogne, P. Van Asten, S. Graefe and R. Rötter. 2020. Effect of cropping system, shade cover and altitudinal gradient on coffee yield components at Mt. Elgon, Uganda. Agriculture, Ecosystems & Environment 295: 106887.

Septar, L., C. Moale, I. Caplan and L. Bocioroaga. 2021. Biometric characteristics of 'Catherine sel 1' peach cultivar in semiarid environment. Current Trends in Natural Sciences 10(9): 381-386.

Silva, D., R. Matias, J. Costa, A. Salazar and C. Bruckner. 2016. Characterization of white- fleshed peach cultivars grown in the 'Zona da Mata' area of Minas Gerais State, Brazil. Comunicata Scientiae 7(1): 149-153.

Sutton, M., J. Doyle, D. Chávez and A. Malladi. 2020. Optimizing fruit-thinning strategies in peach (Prunus persica L.) production. Horticulturae 6(41): 1-16.

Tan, Q., X. Liu, H. Gao, W. Xiao, X. Chen, X. Fu et al. 2019. Comparison between flat and round peaches, genomic evidences of heterozygosity events. Frontiers in Plant Science 10: 592.

Wu, B.H., M. Mimoun, M. Génard, F. Lescourret, J. Besset and C. Bussi. 2005. Peach fruit growth in relation to the leaf-to- fruit ratio, early fruit size and fruit position. Journal of Horticultural Science and Biotechnology 80(3): 340-345.

Zhao, L., C. Li and S. Tang. 2013. Individual-tree diameter growth model for fir plantations based on multi-level linear mixed effects models across southeast China. Journal of Forest Research 18(4): 305-315.

Published

2024-09-01

How to Cite

Growth of peaches at three altitudes in the Santander mountains of Northeastern Colombia. (2024). Bioagro, 36(3), 299-310. https://doi.org/10.51372/bioagro363.5