Different nitrate/ammonium relationships and light intensity and their effect on growth and nutritional content of hydroponic lettuce (Lactuca sativa L.)

Authors

DOI:

https://doi.org/10.51372/bioagro372.3

Keywords:

Artificial light, controlled environment agriculture, nitrate reduction, nutrient solution, plant nutrition

Abstract

Lettuce is the most consumed leafy crop worldwide and the high levels of nitrates in its leaves can be carcinogenic. The objective of this study was to evaluate the effect of different nitrate/ammonium ratios in the nutrient solution and two light intensities (200 and 400 μmol·m⁻²·s⁻¹) on the growth and nutrient concentration of lettuce plants under hydroponic conditions. Controlled environment chambers (light and temperature) and a floating root system were used with the application of Steiner's nutrient solution modified for each of the treatments. Treatments consisted of combinations of three nitrate/ammonium ratios (100/0, 75/25, and 50/50) and two LED light intensities. The variables evaluated were root volume, fresh and dry weight of the leaves, dry weight of the root, total dry weight and the mineral composition of the leaves. The experimental design was completely randomized with a 3 × 2 factorial arrangement with six repetitions. For the statistical analysis of the data, an analysis of variance and a comparison of means test were performed (Tukey, p≤0.05). The results showed that increasing the proportion of ammonium reduced the volume and dry weight of the root without affecting the fresh weight of the leaf. Increasing the light intensity increased the root volume and the fresh and dry weight of the leaves, while ammonium reduced the levels of potassium, calcium and nitrates in the leaves, especially when an intensity of 400 μmol·m⁻²·s⁻¹ was applied. These results suggest that optimizing nitrate/ammonium ratios and light conditions improves biomass production and nutritional quality of hydroponic lettuce.

Downloads

Download data is not yet available.

References

Alcántar, G.G. and V.M. Sandoval. 1999. Manual de análisis químico de tejido vegetal: guía de muestreo, preparación, análisis e interpretación. Publicación especial 10. Sociedad Mexicana de la Ciencia del Suelo, Chapingo, México. 156p.

AOAC (Association of Official Analytical Chemists). 1980. Official methods of analysis. 13th edition. Washington, D.C. 1038p.

ASTRE (Agencia para Sustancias Tóxicas y el Registro de Enfermedades). 2015. Resumen de salud pública. Nitrato y nitrito. Departamento de Salud y Servicios Sociales de los Estados Unidos, Atlanta, Georgia, USA. Available online: https://n9.cl/t1c7z (retrieved on January 15, 2018).

Avendaño-Abarca, V.H., D.C. González-Sandoval, J.P. Munguía-López, R. Hernández-Cuevas, A.I. Luna-Maldonado, J.A. Vidales-Contreras et al. 2020. Crecimiento y absorción total nutrimental de lechuga romana tipo baby cultivada con iluminación led bajo sistema fábrica de plantas. ITEA 116 (4): 280-293.

Azcon-Bieto, J. and M. Talon. 2000. Fundamentos de fisiología vegetal. Mc Graw Hill/Interamericana, Madrid, España. 522p.

Baslam, M., F. Morales, I. Garmendia and N. Goicoechea. 2013. Nutritional quality of outer and inner leaves of green and red pigmented lettuces (Lactuca sativa L.) consumed as salads. Scientia Horticulturae 151: 103-111.

Böhm, W. 1979. Root parameters and their measurement. In: Methods of studying root system. Ecological Studies, vol 33. Springer, Berlin, Heidelberg.

Capera, Q.J.S., F.B.L. Sierra, and T.D. Ávila. 2017. Análisis temático de principios de automatización en el desarrollo de cultivos hidropónicos. Boletín Semillas Ambientales 11 (2): 138-148.

Carrasco, G., J. Tapia and M. Urrestarazu. 2006. Contenido de nitratos en lechugas cultivadas en sistemas hidropónicos. Idesia (Arica) 24 (1): 25-30.

Casierra-Posada, F. and J.E. Peña-Olmos. 2015. Modificaciones fotomorfogénicas inducidas por la calidad de la luz en plantas cultivadas. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 39 (Supl.): 84-92.

Cavaiuolo, M. and A. Ferrante. 2014. Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrients 6 (4): 1519-1538.

Chaillou, S. and T. Lamaze. 2001. Ammoniacal nutrition of plants. In: J.F. Morot-Gaudry (ed.). Nitrogen assimilation by plants. Science Publishers Inc., Enfield, NH, USA, pp. 18.

Chen, X.L., W.Z. Guo, X.Z. Xue, L.C. Wang, and X.J. Qiao. 2014. Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae 172: 168-175.

Chiesa, A. 2010. Factores precosecha y postcosecha que inciden en la calidad de la lechuga. Horticultura Argentina 29 (68): 28-32.

Chowdhury, A. and Das, A. 2015. Nitrate accumulation and vegetable quality. International Journal of Science and Research 4 (12): 1668-1672.

Cramer, M.D. and O.A.M. Lewis. 1993. The influence of nitrate and ammonium nutrition on the growth of wheat (Triticum aestivum L.) and maize (Zea mays) plants. Annals of Botany 72 (4): 359-365.

Fukuda, N., M. Fujita, Y. Ohta, S. Sase, S. Nishimura and H. Ezura. 2008. Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Scientia Horticulturae 115: 176-182.

Hunter, D.C. and D.J. Burritt. 2004. Light quality influences adventitious shoot production from cotyledon explants of lettuce (Lactuca sativa L.). In Vitro Cellular and Developmental Biology-Plant 40: 215-220.

Jiao, Y., O.S. Lau, and X.W. Deng. 2007. Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics 8: 217-230.

Jin, W., Y. Ji, D.H. Larsen, Y. Huang, E. Heuvelink, and L.F.M. Marcelis. 2023. Gradually increasing light intensity during the growth period increases dry weight production compared to constant or gradually decreasing light intensity in lettuce. Scientia Horticulturae 311: 111807.

Johkan, M., K. Shoji, F. Goto, S.N. Hahida and T. Yoshihara. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental and Experimental Botany 75: 128-133.

Lara-Izaguirre, A., A.N. Rojas-Velázquez, M.J. Romero-Méndez, H.M. Ramírez-Tobías, E. Cruz-Crespo, J.A. Alcalá-Jáuregui and C. Loredo-Ostí. 2019. Crecimiento y acumulación de NO3- en lechuga hidropónica con relaciones nitrato/amonio en dos estaciones de cultivo. Revista Fitotecnia Mexicana 42 (1): 21-29.

Loconsole, D., G. Cocetta, P. Santoro and A. Ferrante, 2019. Optimization of LED lighting and quality evaluation of Romaine lettuce grown in an innovative indoor cultivation system. Sustainability 11 (3): 841.

Magalhaes, J.R. and Huber, D.M. 1989. Ammonium assimilation in different plant species as affected by nitrogen form and pH control in solution culture. Fertilizer Research 21: 1-6.

Mengel, K. and E.A. Kirkby. 2000. Principios de nutrición vegetal. Trad. al español por Melgar R.J. y Ruíz, M. 4a ed. Internacional Potash Institute, Basel, Switzerland. pp113-145.

Miao, C., S. Yang, J. Xu, H. Wang, Y. Zhang, J. Cui et al. 2023. Effects of light intensity on growth and quality of lettuce and spinach cultivars in a plant factory. Plants 12 (18): 3337.

Moreno-Pérez, E.D.C., F. Sánchez-Del Castillo, J. Gutiérrez-Tlaque, L. González-Molina and J. Pineda-Pineda. 2015. Greenhouse lettuce production with and without nutrient solution recycling. Revista Chapingo Serie Horticultura 21(1): 43-55.

Motsara, M.R. and R.N. Roy. 2008. Guide to laboratory establishment for plant nutrient analysis. FAO Fertilizer and Plant Nutrition Bulletin 19. Food and Agriculture Organization of the United Nations, Rome. 220 p.

Nguy-Robertson, A., A. Suyker and X. Xiao. 2015. Modeling gross primary production of maize and soybean croplands using light quality, temperature, water stress, and phenology. Agricultural and Forest Meteorology 213: 160-172.

Parra-Terraza, S., P. Lara-Murrieta, M. Villarreal-Romero and S. Hernández-Verdugo, 2012. Crecimiento de plantas y rendimiento de tomate en diversas relaciones nitrato/amonio y concentraciones de bicarbonato. Revista Fitotecnia Mexicana 35 (2): 143-153.

Raviv, M. and J.H. Lieth. 2008. Significance of soilless culture in agriculture. In: Soilless culture. Theory and practice. Elsevier Science, pp:1-11.

Rodríguez, F.H. and A.J. Rodríguez. 2015. Métodos de análisis de suelos y plantas: criterios de interpretación. Editorial Trillas, 288 p.

Saavedra, R.G. (ed.) 2017. Manual de producción de lechuga. Boletín INIA no. 374. Instituto de Investigaciones Agropecuarias,

Santiago, Chile. 153 p.

Samuolienė, G., A. Brazaitytė, R. Sirtautas, A. Novičkovas, and P. Duchovskis. 2011. Supplementary red-LED lighting affects phytochemicals and nitrate of baby leaf lettuce. Journal of Food, Agriculture and Environment 9 (3/4 part 1): 271-274.

Santamaria, P. 2006. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agr. 86: 10-17.

Song, J., J. Yang and B.R. Jeong. 2022. Root GS and NADH-GDH Play Important Roles in Enhancing the Ammonium Tolerance in Three Bedding Plants. International Journal of Molecular Sciences 23: 3 1061.

Song, Y., J. Liu, L. Zhao, J. Ma, S. Wang, X. Li and Y. Li. 2020. The effect of different light qualities on the growth and nitrate content of lettuce (Lactuca sativa L.). Journal of Integrative Agriculture 19 (10): 2415-2425.

StatSoft, Inc. 2004. STATISTICA (data analysis software system), version 7. http:www.statsoft.com

Steiner, A.A. 1984. The universal nutrient solution. In: Proceedings of the Sixth International Congress on Soilless Culture. Wageningen, The Netherlands. pp. 633-649.

Weiguo, F., L. Pingping, W. Yanyou, and T. Jianjian. 2012. Effects of different light intensities on antioxidative enzyme activity, quality, and biomass in lettuce. Horticultural Science 39 (3): 129-134.

Published

2025-05-01

How to Cite

Lara-Murrieta, P., Armenta-Ayala, J. O., González-Balcázar, A., Pérez-Angulo, C., Cruz-Bojorquez, J. E., & Angulo-Castro, A. (2025). Different nitrate/ammonium relationships and light intensity and their effect on growth and nutritional content of hydroponic lettuce (Lactuca sativa L.). Bioagro, 37(2), 167-178. https://doi.org/10.51372/bioagro372.3

Issue

Section

Artículos