Sprouting and bioactive compounds of three oca (Oxalis tuberosa) varieties during postharvest storage

Authors

  • Ana Paredez Escuela Profesional de Ingeniería Agroindustrial, Facultad de Ciencias Agrarias, Universidad Nacional Autónoma de Chota, Colpahuacariz, Chota, Perú. http://orcid.org/0009-0009-8599-7527
  • Frank F. Velásquez-Barreto Escuela Profesional de Ingeniería Agroindustrial, Facultad de Ciencias Agrarias, Universidad Nacional Autónoma de Chota, Colpahuacariz, Chota, Perú. http://orcid.org/0000-0001-8954-9769

DOI:

https://doi.org/10.51372/bioagro372.9

Keywords:

Antioxidant capacity, reducing sugar content, sprout length, total phenol content

Abstract

During postharvest storage oca tubers can pass for different stages, in which bioactive compounds can change their content; and specifically the sprouting stage, can alter significatively these components. Therefore, this study evaluated the sprout length, loss weight, reducing sugar content, total phenolics content, and antioxidant capacity of three oca tuber varieties (yellow, purple, and orange) during postharvest storage. Oca tuber varieties were stored at 19 °C ±1 ºC and relative humidity of 85% ±1%. A factorial design was used to evaluate the effect of oca variety and postharvest storage time (0, 15, 30, 45, 60, 75, and 90 days). The sprout length of the three oca varieties begin to growth at 15-30 days of postharvest storage, which indicated that dormancy period was broken, moreover, the sprout length was increased until 90 days of storage. Yellow oca had the longest sprout length (26.4 cm) and the highest loss weight (22.55 %) at 90 days of storage, which indicated an effect of oca variety and postharvest storage time (p value≤0.05). The reducing sugar content, total phenolics content, and antioxidant capacity of the three oca varieties exhibited variable behaviors during storage time and initially oca tubers showed a reduction in their values, which were presumably related to the stabilization period. The postharvest storage time and oca variety produced different physiological changes in the oca tubers, which affect the sprout length, weight loss, reducing sugars, total phenolics content, and antioxidant capacity.

Downloads

Download data is not yet available.

References

Aliaga, I., F. Velásquez, R. Mendoza and R. Chuquilín. 2011. Efecto de la aplicación de Chlorpropham en el brotamiento de tubérculos de olluco (Ullucus tuberosus L.) en condiciones de almacén. Scientia Agropecuaria 2(2): 91-96.

Balois-Morales, R., M.T. Colinas-León, C.B. Peña-Valdivia, Chávez-Franco, S.H., and I. Alia-Tejacal. 2008. Sistema enzimático antisenescencia catalasa-superóxido dismutasa, de frutas de pitahaya (Hylocereus undatus) almacenados con frío. Revista Chapingo Serie Horticultura 14(3): 295-299.

Barrera, V.H., C.G. Tapia, and A.R. Monteros. 2004. Raíces y tubérculos andinos: Alternativas para la conservación y uso sostenible en el Ecuador. Instituto Nacional de Investigaciones Agropecuarias, Centro Internacional de la Papa. Quito.

Campos, D., G. Noratto, R. Chirinos, C. Arbizu, W. Roca and L. Cisneros‐Zevallos. 2006. Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz & Pavón), Oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas). Journal of the Science of Food and Agriculture 86(10): 1481-1488.

Campos, D., R. Chirinos, L. G. Ranilla and R. Pedreschi. 2018. Bioactive potential of Andean fruits, seeds, and tubers. In Advances in food and nutrition research 84: 287-343.

Chirinos, R., D. Campos, C. Arbizu, H. Rogez, J.F. Rees, Y. Larondelle et al. 2007. Effect of genotype, maturity stage and post-harvest storage on phenolic compounds, carotenoid content and antioxidant capacity, of Andean mashua tubers (Tropaeolum tuberosum Ruiz and Pavón). Journal of the Science of Food and Agriculture 87(3): 437-446.

Chirinos, R., D. Campos, M. Warnier, R. Pedreschi, J.F. Rees and Y. Larondelle. 2008. Propiedades antioxidantes de los extractos fenólicos de mashua (Tropaeolum tuberosum) frente al daño oxidativo mediante ensayos biológicos in vitro. Química de Alimentos 111: 98-105.

Coronado, M., S. Vega, R. Gutiérrez, M. Vázquez, and C. Radilla. 2015. Antioxidantes: perspectiva actual para la salud humana. Revista Chilena de Nutrición 42(2): 206-212.

García, A., M. Pérez, and A. García. 2014. Evaluación del comportamiento postcosecha de la batata (Ipomea batatas (L) Lam) en condiciones de almacenamiento comercial. Revista Iberoamericana de Tecnología Postcosecha 15(2): 177-186.

Gonzales-Torre, H., I. Aliaga-Barrera and F.F. Velásquez-Barreto. 2020. Efecto del chlorpropham (CIPC) en la brotación y compuestos bioactivos de mashua morada (Tropaeolum tuberosum Ruíz y Pavón) durante el almacenamiento. Bioagro 32(1): 49-58.

Kays, S.J., T.P. Gaines and W.R. Kays. 1979. Changes in the composition of the tuber crop Oxalis tuberosa Molina during storage. Scientia horticulturae 11(1): 45-50.

Külen, O., C. Stushnoff and D.G. Holm. 2013. Effect of cold storage on total phenolics content, antioxidant activity and vitamin C level of selected potato clones. Journal of the Science of Food and Agriculture 93(10): 2437-2444.

Lill, R.E., G.J. Van Der Mespel and E.M. O'Donoghue. 1989. Oca (Oxalis tuberosa): Control of tuber sprouting with postharvest dips of maleic hydrazide. New Zealand Journal of Crop and Horticultural Science 17(4): 345-349.

Liu, B., S. Zhao, F. Tan, H. Zhao, D.D. Wang, H. Si and Q. Chen. 2017. Changes in ROS production and antioxidant capacity during tuber sprouting in potato. Food Chemistry 237: 205-213.

Matsuura-Endo, C., A. Kobayashi, T. Noda, S. Takigawa, H. Yamauchiand and M. Mori. 2004. Changes in sugar content and activity of vacuolar acid invertase during low-temperature storage of potato tubers from six Japanese cultivars. Journal of Plant Research 117: 131-137.

Miller, G.L. 1959. Use of dinitrosalicyilic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3): 426-428.

Morales, S., R. Mora, Y. Salinas, J. Rodríguez, M. Colinas and H. Lozoya 2018. Crecimiento y contenido de azúcares de tubérculo de papa en cuatro estados de madurez en condiciones de invernadero. Revista Chapingo. Serie horticultura 24(1): 53-67.

Silva, R.N., V.N. Monteiro, J.D.X. Alcanfor, E.M. Assis and E.R. Asquieri. 2003. Comparação de métodos para a determinação de açúcares redutores e totais em mel. Food Science and Technology 23(3): 337-341.

Sonnewald, S. and U. Sonnewald. 2014. Regulation of potato tuber sprouting. Plants 239: 27-38.

Tofiño, A., M. Fregene, H. Ceballos and D. Cabal. 2006. Regulación de la biosíntesis del almidón en plantas terrestres: perspectivas de modificación. Acta Agronómica 55(1): 1-13.

Velásquez, F., R. Mendoza and I. Aliaga. 2013. Inhibición del brotamiento de tubérculos de papas nativas (Solanum sp.) durante el almacenamiento postcosecha. Agroindustrial Science 3(1): 53-58.

Wencomo, H., R. Ortíz and J. Cáceres. 2017. Quality of seeds from Leucaena species stored under ambient conditions. African Journal of Agricultural 12(4): 279-285.

Yamdeu Galani, J.H., P.M. Mankad, A.K. Shah, N.J. Patel, R.R. Acharya and J.G. Talati. 2017. Effect of storage temperature on vitamin C, total phenolics, UPLC phenolic acid profile and antioxidant capacity of eleven potato (Solanum tuberosum) varieties. Horticultural Plant Journal 3(2): 73-89.

Published

2025-05-01

How to Cite

Paredez, A., & Velásquez-Barreto, F. F. (2025). Sprouting and bioactive compounds of three oca (Oxalis tuberosa) varieties during postharvest storage. Bioagro, 37(2), 233-244. https://doi.org/10.51372/bioagro372.9

Issue

Section

Artículos