Agroecological cultivation of cherry tomatoes using biofertilizers under protected environment
DOI:
https://doi.org/10.51372/bioagro372.6Keywords:
Growth, interaction, organic production, Solanum lycopersiconAbstract
Cherry tomato has been increasing its market demand in Brazil, primarily due to desirable consumption characteristics. Studies aimed at optimizing the agroecological cultivation of cherry tomato remain limited and inconclusive. The aim of this work was to evaluate the effect of biofertilizers on the plant development and production of cherry tomatoes in the cerrado of Roraima. The experiment was carried out in a greenhouse at the Agricultural Sciences Center of the Federal University of Roraima, Boa Vista. For the experiment, a randomized block design was used, arranged in a 2 x 4 factorial scheme (2 types of biofertilizers and 4 doses), with four replications. Two types of organic fertilizer were evaluated, using ordinary biofertilizer (BC: 50 % cattle manure + 50 % water) and enriched biofertilizer (BE: 15 % cattle manure + 15 % poultry manure + 10 % carbonized rice husk + 10 % gravel powder + 50 % water), with the following doses (0; 800; 1600 and 2400 mL·plant-1). The analysis revealed a significant effect of the dose of biofertilizer, type of biofertilizer and their interaction, promoting increasing responses in the dry mass of the aerial part, dry mass of the roots, number of fruits produced and the equatorial diameter of the fruits. However, the plants treated with enriched biofertilizer showed higher values when compared to the plants treated with ordinary biofertilizer. Increasing doses of biofertilizers promoted higher yields, regardless of treatment. The use of biofertilizers in increasing doses promotes the vegetative and productive development of cherry tomatoes.
Downloads
References
Barzee, T.J., A. Edalati, H. El-Mashad, D. Wang, K. Scow y R. Zhang. 2019. Digestate biofertilizers support similar or higher tomato yields and quality than mineral fertilizer in a subsurface drip fertigation system. Frontiers in Sustainable Food Systems 3(July): 1-13.
Brunton, J.G., M.C.S. Jácome y J.F.R. Santacreu. 2011. Estimación de la productividad del melocotonero de maduración precoz. Vida Rural 1(323): 49-51.
Chacón-Padilla, K. y J.E. Monge-Pérez. 2020. Cucumber (Cucumis sativus L.) production under greenhouse conditions: correlations among variables. Revista Posgrado y Sociedad Sistema de Estudios de Posgrado 18(2): 53-70.
Choi, H.S. 2020. Effects of organic liquid fertilizers on biological activities and fruit productivity in open-field cherry tomato. Bragantia 79(3): 447-457.
Costa, J.H.P., V. Cambiaso, L.A. Picardi, G.R. Pratta y G.R. Rodríguez. 2021. Mejoramiento de la calidad del fruto por la incorporación de genes de especies silvestres en el tomate (Solanum lycopersicum L.). Journal of Basic and Applied Genetics 32 (2): 40-47.
Crasque, J., B.C. Neto, G.A.R. de Souza, R.J. Costa, L. de O. Arantes, S.D. Arantes y F. de L. Alves. 2020. Características físico-químicas de frutos de laranja en diferentes porta-enxertos. International Journal of Development Research 10 (8): 37258-37266.
Fernandes, C., J.E. Corá y L.T. Braz. 2007. Classificação de tomate-cereja em função do tamanho e peso dos frutos. Horticultura Brasileira 25 (2): 275-278.
Galdino, A.G., M.F. Costa, F.T. Camara, W.Á. Rodrigues y P.V. Silva. 2017. Produtividade de tomate cereja em sistema orgânico em função do uso de calcário, esterco e mulching. Revista Verde de Agroecologia e Desenvolvimento Sustentável 12 (3): 612.
Gao, F., H. Li. X. Mu, H. Gao, Y. Zhang, R. Li et al. 2023. Effects of organic fertilizer application on tomato yield and quality: a meta-analysis. Applied Sciences (Switzerland) 13 (4): 2-17.
Geremew, A., L. Carson, S. Woldesenbet, C. Carpenter, E. Peace y A. Weerasooriya. 2021. Interactive effects of organic fertilizers and drought stress on growth and nutrient content of Brassica juncea at vegetative stage. Sustainability (Switzerland) 13 (24): 10-14.
Giannakis, I., C. Manitsas, I. Eleftherohorinos, G. Menexes, C. Emmanouil, A. Kungolos y A. L. Lagopodi. 2021. Use of biosolids to enhance tomato growth and tolerance to Fusarium oxysporum f. sp. radicis-lycopersici. Environmental Processes 8 (4): 1415-1431.
Gomes Júnior, J., A.J.N. Da Silva, L.L.M. Silva, F.T. De Souza y J.R. Da Silva. 2011. Crescimento e produtividade de tomateiros do grupo cereja em função da aplicação de biofertilizante líquido e fungo micorrízico arbuscular. Revista Brasileira de Ciências Agrárias 6 (4): 627-633.
Maia, L.S.J.T., J.M. Clemente, N.H. De Souza, de O.J. Silva y P.H.E. Martinez. 2013. Adubação orgânica em tomateiros do grupo cereja. Biotemas 26 (1): 37-44.
Medeiros, R.F., L.F. Cavalcante, F.O. Mesquita, R.M. Rodrigues, G.G. Sousa y A.A. Diniz. 2011. Crescimento inicial do tomateiro-cereja sob irrigação com águas salinas em solo com biofertilizantes bovino. Revista Brasileira de Engenharia Agrícola e Ambiental 15 (5): 505-511.
Mitran, T., P. Kumar Mani, P. Kumar Bandyopadhyay y N. Basak. 2018. Effects of organic amendments on soil physical attributes and aggregate-associated phosphorus under long-term rice-wheat cropping. Pedosphere 28 (5): 823-832.
Monteiro Neto, J.L.L., D.A.A. Albuquerque, A.J.T. Oliveira, R.T. Sakazaki, E.S. da Silva, I.L.G. da S. Carmo, S. da S. Maia, L.G.C. Sborowski, B.J.Z. Monteiro y J.Z.E. Amaya. 2022. Environments and substrates for “pimenta-de-cheiro” (Capsicum chinense Jacq.) seedling production in the Amazon savanna. Revista Agro@Mbiente On-Line 16: 1-15.
Olmedo-López, F.A., R. Ortiz-Rodríguez, R.E. Pérez-Sánchez, A. Morales-Guerrero, T. del C. Ávila Val y P.A. García-Saucedo. 2019. Caracterización fisicoquímica de frutos de tinguaraque (Solanum lycopersicum var. Cerasiforme) cultivados en invernadero. Revista Mexicana de Ciencias Agrícolas 23: 325-330.
Quirós, R., A. Halog y P. Muñoz. 2022. Environmental assessment of two irrigation systems in an organic tomato crop system under manure compost fertilization: a sustainable circular economy approach in Catalonia (Spain). Circular Economy and Sustainability 2 (4): 1445-1462.
R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing (4.2.2). https://www.r-project.org/
Shimizu, G.D., R.Y.P. Marubayashi y L.S. A. Gonçalves. 2024. AgroR: experimental statistics and graphics foragricultural sciences. R Package Version 1.3.6. https://n9.cl/3tx5e
Silva, P.A. da, J. da S. Rabelo, M. de A. Guimarães, J.C. do V. Silva y L.S.C. de Oliveira. 2017. Sistemas de condução na producción comercial de tomate “cereja.” Nativa 5 (5): 316-319.
Singh, D.K. 2021. Polyhouse vegetable crop breeding. En D.K. Singh y K.V. Peter (eds.), Protected Cultivation of Horticultural Crops. New India.
Souza, M.V.P. de, M. de O. Rebouças, G.G. de Sousa, B.M. de Azevedo, G.F. Goes y C.L. Magalhães. 2020. Estresse salino e uso de biofertilizante bovino na cultura do tomate. Revista Brasileira de Agricultura Irrigada 13 (4): 3524-3532.
Traoré, A., A.A. Bandaogo, O. M. Savadogo, F. Saba, A.L. Ouédraogo, Y. Sako, I. Sermé y S. Ouédraogo. 2022. Optimizing tomato (Solanum lycopersicum L.) growth with different combinations of organo-mineral fertilizers. Frontiers in Sustainable Food Systems 5 (March): 1-7.
Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag. https://ggplot2.tidyverse.org/
Wu, Y., S. Yan, J. Fan, F. Zhang, J. Zheng, J. Guo y Y. Xiang. 2020. Combined application of soluble organic and chemical fertilizers in drip fertigation improves nitrogen use efficiency and enhances tomato yield and quality. Journal of the Science of Food and Agriculture 100 (15): 5422-5433.
Ye, L., X. Zhao, E. Bao, J. Li, Z. Zou y K. Cao. 2020. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports 10 (1): 1-11.
Zhang, L., T. Meng, Z. Zhang y Y. Mu. 2023. Effects of organic fertilizer substitution on the technical efficiency among farmers: evidence from Bohai Rim Region in China. Agronomy 13 (3): 761.
Zhou, Z., S. Zhang, N. Jiang, W. Xiu, J. Zhao y D. Yang. 2022. Effects of organic fertilizer incorporation practices on crops yield, soil quality, and soil fauna feeding activity in the wheat-maize rotation system. Frontiers in Environmental Science 10 (November): 1-13.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Wellington Farias Araújo, Rafael Jorge do Prado, Mauricio Augusti, João Luiz Lopes Monteiro Neto, Raimundo De Almeida Pereira, Ricardo Manuel Bardales-Lozano

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Rights of the author/s are from the year of publication
This work is under the license:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors not necesarily reflect the position of the publisher or UCLA. The total or partial reproduction of the texts published in this journal is authorized, as long as the complete source and the electronic address of this journal is cited. Authors have the right to use their articles for any purpose as long as it is done for non-profit purposes. Authors can publish the final version of their work on internet or any other medium, after it has been published in this journal.
Bioagro reserves the right to make textual modifications and technical adjustments to the figures of the manuscripts, in accordance with the style and specifications of the journal.