Vermicompost and humic substances in the production of strawberries cv. San Andreas in soils low in organic matter

Authors

  • Dante De la Borda-Medina Universidad Nacional de San Agustín de Arequipa, Facultad de Agronomía, Escuela Profesional de Ingeniería Agronómica. Arequipa, Perú. https://orcid.org/0009-0003-0770-4529
  • Guido Sarmiento-Sarmiento Universidad Nacional de San Agustín de Arequipa, Facultad de Agronomía, Escuela Profesional de Ingeniería Agronómica. Arequipa, Perú. https://orcid.org/0000-0002-1420-2186
  • Luis Lipa-Mamani Universidad Nacional de San Agustín de Arequipa, Facultad de Agronomía, Escuela Profesional de Ingeniería Agronómica. Arequipa, Perú. https://orcid.org/0000-0002-6175-6819
  • María A. Cahuana-Parada Universidad Nacional de San Agustín de Arequipa, Facultad de Agronomía, Escuela Profesional de Ingeniería Agronómica. Arequipa, Perú. https://orcid.org/0000-0003-3117-5981
  • Víctor Pacheco-Sánchez Universidad Nacional de San Agustín de Arequipa, Facultad de Agronomía, Escuela Profesional de Ingeniería Agronómica. Arequipa, Perú. https://orcid.org/0000-0003-2790-0124
  • Laydy Mena-Chacón Universidad Nacional de San Agustín de Arequipa, Facultad de Agronomía, Escuela Profesional de Ingeniería Agronómica. Arequipa, Perú. https://orcid.org/0000-0002-9364-7801

DOI:

https://doi.org/10.51372/bioagro381.9

Keywords:

Organic agriculture, organoleptic quality, yield

Abstract

The growing demand for healthy fruits is driving the development of sustainable technologies to ensure food safety. In this context, the application of organic amendments represents a viable alternative for soils low in organic matter. It was evaluated the effect of three doses of vermicompost (0, 90, 180 g·planta-1) y humic substances (0, 50, y 100 g·planta-1) on yield, fruit quality, and soil properties of strawberry (cv. San Andreas) production. A randomized complete block design with a 3×3 factorial arrangement was used. The combination of 180 g·planta-1 of vermicompost y 50 g/plant of humic substances resulted in the highest yield (216.68 g·planta-1), with 90% of the fruits classified as extra quality.  Regarding soil quality, the organic matter content total nitrogen, y cation exchange capacity, increased. It has been demonstrated that the combined or individual application of organic inputs enhances the productivity y sustainability of strawberry cultivation in soils low in organic matter.

Downloads

Download data is not yet available.

References

Aali, N., N. Alemzadeh y S. Morteza. 2024. Development of sustainable strawberry production in closed cultivation systems: Effects of bagasse biochar on morphological and physiological attributes, yield and autotoxic changes. Journal of Environmental Management 371: 123100.

Arancon, N., C. Edwards y P. Bierman. 2006. Influences of vermicomposts on field strawberries: Part 2. Effects on soil microbiological and chemical properties. Bioresource Technology 97(6): 831-840.

Bazán, T.R. 2017. Manual de procedimientos de los análisis de suelos y agua con fines de riego. Instituto Nacional de Innovación Agraria. https://n9.cl/xyp21

Dutra, J., J. Nolibos, P. Silva y R. Peil. 2025. Dynamics of nitrogen, phosphorus, and potassium extraction by two strawberry cultivars (Fragaria x ananassa Duch.) grown in substrate. Horticultura Argentina 44(113): 32-41. https://n9.cl/b9lmw7

INACAL. 2019. Norma Técnica Peruana para fresas frescas-NTP 011:011. INACAL. Lima, Perú. 12 p. https://n9.cl/vx9r

Kazemi, M. 2014. The impact of foliar humic acid sprays on reproductive biology and fruit quality of strawberry. Thai Journal of Agricultural Science 47(4): 221-225. https://n9.cl/l5qfa

Kilic, N., N. Turemis y H. Dasgan. 2021. The effect of fertilizers on crop yield, fruit quality and plant nutrition of organically grown strawberry (Fragaria x ananassa Duch.). Applied Ecology and Environmental Research 19(3): 2201-2211.

Mena, L., J. Sarmiento y P. Camargo. 2017. Impacto del abonamiento integral en el rendimiento y calidad de fresa (Fragaria x ananassa Duch.) cv. Selva bajo sistema de riego por goteo y cobertura plástica. Scientia Agropecuaria 8(4): 357-366.

Nakielska, M., A.K. Berbeć, A. Madej y B. Feledyn-Szewczyk. 2024. Microbial fertilizing products impact on productivity y profitability of organic strawberry cultivars. Horticulturae 10(10): 1112.

Neri, D., E. Lodolini, G. Savini, P. Sabbatini, G. Bonanomi y F. Zucconi. 2002. Foliar application of humic acids on strawberry (cv onda). Acta Horticulturae 594: 297-302.

Oliva, M., J. Oliva y C. Trauco. 2018. Determinación de parámetros fisicoquímicos y productividad de cinco variedades de fresa (Fragaria spp.) cultivadas bajo sistema de acolchado en Molinopampa, Amazonas. Revista de Investigación Agroproducción Sustentable 2(3): 30-38.

Olivera, J. 2012. Cultivo de fresa (Fragaria x ananassa Duch.). In: MINAGRI (ed.). Manual Técnico de Cultivos Andinos. INIA. Perú.

Peña, E., J. Havel y J. Patocka. 2004. Humic substances-compounds of still unknown structure: Applications in agriculture, industry, environment, and biomedicine. Journal of Applied Biomedicine 3(1): 13-24.

Pergola, M., A. Maffia, G. Carlucci, A. Persiani, A.M. Palese, M. Zaccardelli, G. Altieri y G. Celano. 2023. An environmental y economic analysis of strawberry production in southern Italy. Agriculture 13(9): 1705.

Quiroga, A. y A. Bono. 2012. Manual de fertilidad y evaluación de suelos. INTA. Argentina.

Romero, R., J. Leos, G. Torres y M. Zavala. 2022. Viabilidad económica de la implementación de buenas prácticas agrícolas en la producción de cebolla. Agricultura, Sociedad y Desarrollo 19(1): 1-10.

Sarmiento, G., M. Amézquita y L. Mena. 2019. Uso de bocashi y microorganismos eficaces como alternativa ecológica en el cultivo de fresa en zonas áridas. Scientia Agropecuaria 10(1): 55-61.

Saygi, H. 2022. Effects of organic fertilizer application on strawberry (Fragaria vesca L.) cultivation. Agronomy 12: 1233.

Shehata, S., A. Gharib, M. Mohamed, A. El-Mogy, K. Gawad y A. Emad. 2011. Influence of compost, amino y humic acids on the growth, yield and chemical parameters of strawberries. Journal of Medicinal Plants Research 5(11): 2304-2308. https://n9.cl/93h67

Taco, D., L. Mena y L. Zegarra. 2024. Comportamiento agronómico y rentabilidad de híbridos de Capsicum annuum L. cv. Ancho San Luis cultivados en campo abierto en Perú. Chilean Journal of Agricultural y Animal Sciences (ex Agro-Ciencia) 40(1): 23-32.

Tagliavini, M., E. Baldi, M. Antonelli, G. Sorrenti, G. Baruzzi y W. Faedi. 2005. Dynamics of nutrients uptake by strawberry plants (Fragaria × ananassa Duch.) grown in soil and soilless culture. European Journal of Agronomy 23(1): 15-25.

Veobides, H., F. Guridi y V. Vázquez. 2018. Las sustancias húmicas como bioestimulantes de plantas bajo condiciones de estrés ambiental. Cultivos Tropicales 39(4): 102-109. https://n9.cl/iitmx

Yanan, Z., Z. Junxiang, Z. Rui, D. Hongyan y Z. Zhihong. 2018. Application of vermicompost improves strawberry growth y quality through increased photosynthesis rate, free radical scavenging and soil enzymatic activity. Scientia Horticulturae 233: 132-140.

Yogesh, K., P. Negi, U. Shweta y A. Mishra. 2021. Enhancement in yield and nutritive qualities of strawberry fruits by the application of organic manures and biofertilizers. Scientia Horticulturae 283: 110038.

Published

2026-01-01

How to Cite

De la Borda-Medina, D., Sarmiento-Sarmiento, G., Lipa-Mamani, L., Cahuana-Parada, M. A., Pacheco-Sánchez, V., & Mena-Chacón, L. (2026). Vermicompost and humic substances in the production of strawberries cv. San Andreas in soils low in organic matter. Bioagro, 38(1), 495-508. https://doi.org/10.51372/bioagro381.9

Issue

Section

Artículos