Proximities when actuating epistemic-cognitive mathematics. prelude that springs from testimonies of novice and expert mathematicians. an exploratory study

Authors

Keywords:

Advanced Mathematical Thought, epistemic and cognitive actions, novice and expert

Abstract

In this article we present some results, reflections and contributions of a research work (Sánchez, 2018) whose central problem is directed to study the epistemic and cognitive actions that activate the novice and expert mathematicians when developing mathematical knowledge and offer the didactic new clues on how it is possible to learn to think and generate mathematically. We set ourselves two great intentions: (1) to study how, cognitively, the expert or novice mathematician recognizes a problem and certain possibilities, structures new conjectures, to lead to a formal proof and thus generate contributions to mathematics, and (2) propose a theoretical and conceptual approach to the job of the teacher and student of mathematics in light of the contributions recorded by the epistemic and cognitive actions of the professional mathematician. In this manuscript we only show part of the first purpose. Conceptually, the research focuses on the cognitive domain of the so-called Advanced Mathematical Thought. Methodologically we adhere to the perspective of qualitative research. The analysis of these records focused on a process of description, categorization and interpretation, with the support of systemic networks, where categories and/or attributes emerged led us to characterize the actions of novice and expert mathematicians in solving mathematical problems

Downloads

Download data is not yet available.

Author Biographies

Juan Carlos Sánchez, Dr, Universidad Pedagógica Experimental Libertador-Instituto Pedagógico. Venezuela

Doctor of Education, Master in Mathematics, mention Mathematics Teaching. Professor at Universidad Pedagógica Experimental Libertador-Instituto Pedagógico Barquisimeto, Department of Mathematics. Barquisimeto, Venezuela

Carmen Valdivè, Dra, Universidad Centroccidental Lisandro Alvarado. Venezuela

Doctor of Education, Master in Mathematics, mention Mathematics Teaching. PhD in Education in the area of Mathematics Education. Professor at Universidad Centroccidental Lisandro Alvarado. Barquisimeto, Venezuela

References

Alcock y Weber (2005). ‘Proof validation in real analysis: Inferring and checking warrants’. Journal of Mathematical Behavior 24, 125–134.
Balacheff, N. (1982). Preuve et demostration en Mathamatiques au College. Recherches in Didactique des Mathematiques, 3 (3), 261-304.
Balacheff, N. (1987). Processus de preuve et situations de validation. Educational Studies in Mathematics, 18(2), 147-176.
Bliss, J. Monk, M. y Ogborn (1983). Qualitative Data Analysis for Educational Research. Croom Helm. London.
Chi, M. T .H., Glaser, R. y Farr, M. J. (Eds.) (1988). The nature of expertise. Hillsdale: Erlbaum.
Dieudonné, J. (1989). En Honor del Espíritu Humano, Las Matemáticas Hoy. Editorial Alianza Universidad.
De Lorenzo, J. de (1971). Introducción al Estilo Matemático. Madrid: Tecnos.
De Lorenzo, J. de (1980). El Método Axiomático y sus Creencias. Madrid: Tecnos.
De Lorenzo, J. de (1998). La matemática: de sus fundamentos y crisis. Madrid: Tecnos.
Dreyfus, T. (2002). Advanced mathematical thinking process. In David Tall (Ed.), Advanced Mathematical Thinking. (pp. 25-41). Dordriech, the Netherlands: Kluwer Academic Publishers.
Dreyfus, T. y Eisenberg, T. (1996). On Different Facets of Mathematical Thinking. In Sternberg, R. y Ben-Zeev, T. (eds.), The Nature of Mathematical Thinking. Nueva Jersey: Lawrence Erlbaum Associates, Publishers.
Fischbein, E. (2002). The Interaction Between The Formal, The Algorithmic, And The Intuitive Components In A Mathematical Activity. Didactics Of Mathematics as a Scientific Discipline, Mathematics Education Library, vol, 12, pp. 231-245.
Gray, E. y Tall, D. (2001). Relationships between embodied objects and symbolic procepts: an explanatory theory of success and failure in mathematics. Published in Proceedings of PME 25, Utrecht, pp. 65-72.
Goizueta, M. (2015). Aspectos Epistemologicos de la Argumentacion en el Aula de Matemática. Tesis Doctoral. Universidad Autónoma de Barcelona.
Hadamard, J. (1945). The Psychology of Invention in the Mathematical Field. New York: Dover Publications.
Harel, G. y Sowder, L. (1998). ‘Students’ proof schemes: Results from exploratory studies’. In E. Dubinsky, A. Schoenfeld and J. Kaput (Eds.), Research in Collegiate Mathematics Education, III, (234–283). American Mathematical Society, Providence, RI.
Inglis, Mejia-Ramos, Simpson (2014) Modelling mathematical argumentation: the importance of qualification. Educ Stud Math 66:3–21.
Larios, V. (2015) La construcción continua de la demostración como medio para enseñar y aprender a validar matemáticamente. XIV Conferencia Interamericana de Educación Matemática (XIV CIAEM-IACME). Chiapas, México.
Marmolejo, E. y Moreno, G. (2011) Argumentar-Conjeturar: Introducción a la Demostración. Acta Latiniamericana de Matemática Educativa 24, Comité Latinoamericano de Matemática Educativa (CLAME). pp. 509-516.
Peinado, S. y Leal, S. (2013). Nivel de experticia, tipo de enunciado y resolución de problemas en estudiantes universitarios. Revista Acción Pedagógica, Nº 22, pp. 82 – 91.
Pozo, J. (1994). La resolución de problemas de ciencias. Madrid: CIDE-MEC.
Sánchez, J. y Valdivé, C. (2012). El número irracional: Una visión histórico-didáctica. Premisa 14(52), 1-17.
Sánchez, J. (2016). Convicciones y Creencias del Matemático Experto: Aportes y Reflexiones para la Matemática Escolar. Conferencia de Clausura del IX Congreso Venezolano de Educación Matemática (IX COVEM). Barquisimeto.
Sánchez, J. (2018). Desarrollo Cognitivo del Conocimiento Matemático. Caso el Novato y el Experto. Tesis doctoral no publicada. Doctorado Interinstitucional en Educación UCLA-UNEXPO-UPEL. Barquisimeto.
Schoenfeld, A.H. (1992). Learning to think mathematically: Metacognition, problem solving, and sense making in mathematics. In D. Grouws (Ed.) Handbook of research on mathematical thinking and learning. New York: Macmillan.
Sierpinska, A. y Lerman, S. (1996). Epistemologies of mathematics and of mathematics education. En: A. J. Bishop et al. (eds.), International Handbook of Mathematics Education, pp. 827-876.
Tall, D. (2002). Differing Modes of Proof and Belief in Mathematics, International Conference on Mathematics: Understanding Proving and Proving to Understand, 91–107. National Taiwan Normal University, Taipei, Taiwan.
Tall, D. (2004a). Thinking Through Three Worlds of Mathematics. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, Bergen, Norway, 4, 281–288.
Tall, D. (2004b). Introducing Three Worlds of Mathematics. For the Learning of Mathematics, 23 (3). 29–33.
Tall, D. (2013). How humans learn to think mathematically. Cambridge: Cambridge University Press.
Tall, D. (2014). Making Sense of Mathematical Reasoning and Proof. M.N. Fried, T. Dreyfus (eds.), en Mathematics & Mathematics Education: Searching for Common Ground. New York: Springer.
Valdivé, C. (2008). Estudio de los esquemas conceptuales asociados a la noción de infinitesimal y su evolución en estudiantes de análisis matemático. Tesis doctoral no publicada. Doctorado Interinstitucional en Educación UCLA-UNEXPO-UPEL. Barquisimeto.
Valdivé C. y Garbin, S. (2008). Estudio de los Esquemas Conceptuales Epistemológicos Asociados a la Evolución histórica de la Noción de Infinitesimal. Revista Latinoamericana de Matemática Educativa, Relime, 11(3): 413-450
Valdivé, C. y Garbin, S. (2010). Estudio de la evolución de los esquemas conceptuales previos asociados al infinitesimal: Caso de un estudiante clave. Educare, Revista de Investigación y Postgrado de la UPEL, 14(3), 3-31.
Valdivé, C. y Garbin, S. (2013). ¿Cómo Piensan los Estudiantes el Infinitesimal Antes de Iniciar un Curso de Análisis Matemático?. Revista PARADIGMA, VOL. XXXIV, Nº 1; pp. 117 – 144.
Valdivé, C. (2013). Estrategias Implementadas por los Matemáticos cuando Demuestran: Estudio de Caso. Revista EDUCARE, Volumen 17, Número 2, pp.4-26.
Weber y Alcock (2004). Semantic and syntactic proof productions. Educational Studies in Mathematics 56, 209–234.
Weber, K.; Inglis, M. y Mejia-Ramos (2014). How Mathematicians Obtain Conviction: Implications for Mathematics Instruction and Research on Epistemic Cognition. Article in Educational Psychologist. 49(1), pp. 1-74.
Weber, K. & Mejia-Ramos, J.P. (2011). How and why mathematicians read proofs: An exploratory study. Educational Studies in Mathematics, 76, 329-344

Published

2019-01-07

How to Cite

Sánchez, J. C., & Valdivè, C. (2019). Proximities when actuating epistemic-cognitive mathematics. prelude that springs from testimonies of novice and expert mathematicians. an exploratory study. Gestión Y Gerencia, 12(2), 50-86. Retrieved from https://revistas.uclave.org/index.php/gyg/article/view/2011

Issue

Section

Research Articles