Cardiovascular risk factors associated with oxidative stress in adolescents with overweight and obesity.
Keywords:
Obesity, overweight, cardiovascular risk factors, oxidative stressAbstract
The increase of reactive oxygen species is generated when oxidative conditions occur, as in obesity and lead to chronic diseases such as high blood pressure. Oxidative stress has been reported as a trigger and result of high blood pressure, which affects cardiovascular health. The objective of the present study was to determine oxidative stress and its association with Cardiovascular Risk Factors (CVRF) in overweight and obese adolescents, for this clinical and paraclinical parameters were determined, and cardiovascular risk factors were evaluated, such as hypertension, dyslipidemia, obesity, overweight and markers of oxidative stress. The sampling was non-probabilistic and consisted of 34 adolescents, with ages between 13 and 19 years, which were grouped according to the value of Body Mass Index (BMI) in normal (BMI between 18.5 and 24.9) with 10 patient and overweight/obesity (BMI greater than 25). The data were analyzed with the statistical package SPSS version 19, the averages ± the standard deviation is presented, additionally a multiple linear regression model was applied for each of the dependent variables used to determine the oxidative stress, statistical significance was accepted before values of p≤0.05. In the adolescents studied, no association was found between the cardiovascular family history and the evaluated variables, in addition, greater oxidative stress was observed in overweight/obese patients, statistically significant and association with BMI, urea and total cholesterol. In conclusion, there is an association between oxidative stress and CVRF in adolescents with a BMI greater than 25.
Downloads
References
2. Caliceti, C., Rizzo, P., & Giuliano, M. Role of Natural Compounds in Oxidative Stress and Inflammation Linked to Cardiometabolic Disorders: From Biochemical Aspects to Clinical Evidences. Oxidative medicine and cellular longevity. Revista en linea, Vol. 2018, N° de artículo 1479309, 2 páginas. https://doi.org/10.1155/2018/1479309 [Consultado 30 de julio 2019¬¬¬].
3. Huang, K., Gao, X., Wei, W. The crosstalk between sirt1 and keap1/Nrf2/are anti-oxidative pathway forms a positive feedback loop to inhibit FN and TGF-β1 expressions in rat glomerular mesangial cells. Exp Cell Res 2017, Vol. 361:63-72.
4. Lobos Bejaranoa, JM, Brotons Cuixartb C. Cardiovascular risk factors and Primary Care: evaluation and intervention. Aten Primaria 2011, Vol. 43, (12): 668-677.
5. WHO, World Health Statistics: Monitoring Health for the SDGs Sustainable Development Goals, World Health Organization, Geneva, Switzerland, 2017. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) [Consultado 25 de mayo 2019].
6. Roger, V., Go, A., Lloyd-Jones, D., Benjamin, E., Berry, J., Borden, W. Executive Summary: Heart Disease and Stroke Statistics 2012 Update: a report from the American Heart Association. Circulation 2012, 125(1):188-97.
7. Li, M., Fukagawa, N. K. Age-related changes in redox signaling and VSMC function. Antioxidants & Redox Signaling 2010, Vol. 12, (5):641–655.
8. Stapleton, P., Goodwill, A., James, M. Brock, R. Frisbee, J. Hypercholesterolemia and microvascular dysfunction: interventional strategies. Journal of Inflammation 2010, Vol. 7, (1): 54.
9. Sarega, N., Imam, M., Ooi, D. Phenolic rich extract from Clinacanthus nutans attenuates hyperlipidemia-associated oxidative stress in rats. Oxidative Medicine and Cellular Longevity, 2016, N° de artículo 4137908, 16 páginas, disponible en: http://dx.doi.org/10.1155/2016/4137908 [Consultado 23 de mayo 2019].
10. Rafacho, B., Azevedo, P., Polegato, B. Tobacco smoke induces ventricular remodeling associated with an increase in NADPH oxidase activity. Cell Physiol Biochem. 2011, Vol. 3-4: 305–312.
11. Sinha-Hikim, I., Friedman, T., Falz, M. Nicotine plus a high-fat diet triggers cardiomyocyte apoptosis. Cell Tissue Res. 2017, 368(1):159-170.
12. Ayepola, O., Brooks, N., Oguntibeju, O. Estrés oxidativo y complicaciones diabéticas: el papel de las vitaminas antioxidantes y los flavonoides. Intechopen 2014 Disponible en: http://dx.doi.org/10.5772/57282 [Consultado 20 de mayo 2019].
13. Qin, S., Yin, J., Huang, K. Free fatty acids increase intracellular lipid accumulation and oxidative stress by modulating PPARα and SREBP-1c in L-02 cells. Lipids 2016, Vol. 51. (7):797-805.
14. Dietz, W. Chidhood weight affects adult morbidity and mortality. J Nutr, 1998, Vol. 128:411S–4S.
15. Coakley, J.C. (2018). Lipids in Children and Links to Adult Vascular Disease. Clin Biochem Rev. Vol. 39. Núm 3:65-76.
16. Freedman, D., Mei, Z., Srinivasan, S., Berenson, G., Dietz, W. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J Pediatrics 2007, Vol. 150, (1):12-17.
17. Murray, C., Phil, D., Lopez, A. Measuring the global burden of disease. N Engl J Med. 2013, Vol. 369, (5):448-57.
18. Wallin, B., Rosengren, H., Shertzer, G. Lipoprotein oxidation and measurement of thiobarbituric acid reacting substances formation in a single microtiter plate: Its use for evaluation of antioxidants. Anal Biochemical 1993, (208):10-15.
19. Ohkawa, H., Ohishi, N., & Yagi, K. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Annals of Biochemistry 1979, (95):351-358.
20. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in children and adolescents. Full Report. National Institute of Health. National Heart, Lung, and Blood Institute. NIH. Publication Nº 127486. October 2012.
21. Paredes Díaz, R., Orraca Castillo, O., Marimón Torres, E., Casanova Moreno, M., González Valdés, L. Influencia del sedentarismo y la dieta inadecuada en la salud de la población pinareña. Rev Ciencias Médicas 2014, 18(2):221-230.
22. Cammarata, R., Ramones I., Sosa Canache, B., Pacheco, B. Alteraciones estructurales cardiacas en pacientes obesos con o sin síndrome metabólico y otros factores de riesgo cardiovascular. Rev venezolana de salud pública, 2017, Vol. 5 (1): 23-30.
23. Khalil, G. y Haynes, W. Sympathetic nervous system in obesity-related hypertension: mechanisms and clinical implications. Hypertension Research 2012, 35, 4-16.
24. López E. y Medina C. (2015). Mecanismos moleculares de la disfunción endotelial en la hipertensión arterial y obesidad. Boletín Médico de Postgrado. Vol. XXXI Nº 1:70-80.
25. Rampazzo, N., Miglioranza, B., Da silva, L., Matisti, M., Colado, A., Dichi, I. Metabolic syndrome components are associated with oxidative stress in overweight and obese patients. Arch. Endocrinol. Metab. 2018 Vol.62,(3):309-318.
26. Jia, X., Liu, L., Tian, Y., Wang, R., Lu, Q. The correlation between oxidative stress level and intra-abdominal fat in obese males. Medicine, 2019, 98(7):e14469.
27. Cruz, S., Durán, H., Navarro, M., Xochihua, I., De la Peña S., Arroyo, O. Body mass index is associated with interleukin-1, adiponectin, oxidative stress and ioduria levels in healthy adults. Nutr Hosp. 2018 Agost 2;35(4):841-846.
28. Carreira, M., Izquierdo, A., Amil, M., Casanueva, F., Crujeiras, A. Oxidative Stress Induced by Excess of Adiposity Is Related to a Downregulation of Hepatic SIRT6 Expression in Obese Individuals. Oxid Med Cell Longev. Volume 2018, Article ID 6256052, 7 pages disponible en https://doi.org/10.1155/2018/6256052 [Consultado 20 de mayo 2019].
29. Latif, R. y Rafique, N. Association of anthropometric measurements with oxidant-antioxidant status among young Saudi females. Physiol Res. 2018 Nov 14;67(5):787-793.
30. Abraham, M., Collins, C., Flewelling, S., Camazine, M., Cahill, A., Cade W., Duncan, J. Mitochondrial inefficiency in infants born to overweight African-American mothers. Int J Obes (Lond). 2018 Jul;42(7):1306-1316.
31. Xu, H., Cupples, L., Stokes, A., Liu, C. Association of Obesity With Mortality Over 24 Years of Weight History: Findings From the Framingham Heart Study. JAMA Netw Open 2018 Nov 2;1(7):e184587.
32. Fang, F., Liug, C. Adiponectin attenuates angiotensin II-induced oxidative stress in renal tubular cells through AMPK and cAMPEpac signal transduction pathways. Am J Physiol Renal Physiol 2013, 304: F1366-F1374.
33. Kamal, A., Hamdy, K., and Mohamed E. (2011). Protective effect of Garcinia against renal oxidative stress and biomarkers induced by high fat and sucrose diet. Lipids in Health and Disease; 10: 6.
Published
How to Cite
Issue
Section
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Derechos del/de autor/es a partir del año de publicación
Esta obra está bajo la licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación ni de la UCLA. Se autoriza la reproducción total o parcial de los textos aquí publicados, siempre y cuando se cite la fuente completa y la dirección electrónica de esta revista. Los autores(as) tienen el derecho de utilizar sus artículos para cualquier propósito siempre y cuando se realice sin fines de lucro. Los autores(as) pueden publicar en internet o cualquier otro medio la versión final aprobada de su trabajo, luego que esta ha sido publicada en esta revista.