Evaluation of substrates produced from cellulose residues for propagation of ornamentals and vegetables

Authors

  • John Sánchez-Cardozo Universidad de La Sabana, Facultad de Ingeniería, Campus Universitario del Puente del Común. Chía, Cundinamarca, Colombia
  • Luis E. Díaz-Barrera Universidad de La Sabana, Facultad de Ingeniería, Campus Universitario del Puente del Común. Chía, Cundinamarca, Colombia.

Keywords:

Carnation, gypsophila, lettuce, peat, rice husk, tomato, slag

Abstract

The propagation of plants by means of substrates has become one of the most recurrent practices of the floricultural and horticultural industry because it increases the quality of the products, decreases the production costs and the losses by deaths of the seedlings. In this study, 12 treatments elaborated with mixtures of cellulose and fruit residues, burned rice husk, coal slag, or peat were characterized by porosity tests, water activity, chemical composition, phytotoxicity, and physicochemical tests. Subsequently, it was assessed in a randomized complete block design the effect of the treatments on the growth and viability of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum) evaluating their germination, biomass production, and length of the roots; and the effect of the treatments in the rooting of carnation (Dianthus caryophyllus) and gypsophila (Gypsophila paniculata) evaluating the viability and length and weight of roots. It was found that all treatments have a porosity (75-83 %), water retention capacity (6.90-11.28), phytotoxicity and physicochemical properties suitable for their application as substrates. However, the results for rooting and germination tests showed that only rice husk treatments can be used in all species with a viability level higher than 80 % for lettuce and tomato, and between 60-90 % for the gypsophila and the carnation. One of the substrates composed of cellulose residues and fruit with rice husk and the compounds only for rice husk were suitable for the rooting of carnation and therefore can be a suitable mixture for the propagation of this species.

Downloads

Download data is not yet available.

References

1. Agehara, S. y D. Warncke. 2005. Soil Moisture and Temperature Effects on Nitrogen Release from Organic Nitrogen Sources. Soil Science Society of America Journal 69: 1844-1855.
2. Altieri, R., A. Esposito y G. Baruzzi. 2010. Use of olive mill waste mix as peat surrogate in substrate for strawberry soilless cultivation. International Biodeterioration & Biodegradation 64(7): 670-675.
3. Arcos, B., O. Benavides y M. Rodríguez. 2011. Evaluación de dos sustratos y dos dosis de fertilización en condiciones hidropónicas bajo invernadero en lechuga (Lactuca sativa L.) Revista de Ciencias Agrícolas (2): 95-108.
4. Baena Aristizábal, Y. 2011. Estudio fisico- químico de la liberación del diclofenac a partir de complejos polielectrolitofármaco. Universidad Nacional de Colombia, Facultad de Ciencias. Bogotá, Colombia. http://bdigital.unal.edu.co/4363/1/192818.2011.pdf (consulta del 10/10/2018)
5. Baracaldo Argüello, A., A. Ibagué Ovalle, V. Flórez Roncancio y B. Chaves Cordoba. 2010. Crecimiento en clavel estándar en suelo y en sustratos. Bragantia 69(1): 1-8.
6. Bernal, M.P. y A. Roig. 2002. Growth of ornamental plants in two composts prepared from agroindustrial wastes. Bioresource Technology 83(2): 81-87.
7. Blažka, P. y Z. Fischer. 2014. Moisture, Water Holding, Drying and Wetting in Forest Soils. Open Journal of Soil Science 4(5): 174-184.
8. Bracho, J., F. Pierre y A. Quiroz. 2009. Caracterización de componentes de sustratos locales para la producción de plántulas de hortalizas en el Estado Lara, Venezuela. Bioagro 21(2): 117-124.
9. Burnett, S., N. Mattson y K. Williams. 2016. Substrates and fertilizers for organic container production of herbs, vegetables, and herbaceous ornamental plants grown in greenhouses in the United States. Scientia Horticulturae 208: 111-119.
10. Businelli, D., R. D’Amato, A. Onofri, E. Tedeschini y F. Tei. 2015. Se-enrichment of cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.) and tomato (Solanum lycopersicum L. Karst) through fortification in pre-transplanting. Scientia Horticulturae 197: 697-704.
11. Cheimona, N., C. Angeli, E. Panagiotou, A. Tzanidaki, C. Drontza, I. Travlos, y D. Bilalis. 2016. Effect of different types of fertilization on weed flora in processed tomato crop. Agriculture and Agricultural Science Procedia Journal 10: 26-31.
12. Cruz C., J. M., J. M. Álvarez S., M. D. J. Soria F. y C. Martínez B. 2016. Producción de sustratos orgánicos para ornamentales a menor costo que los importados. Rev. Cien. Téc. Agropec. 25: 44-49.
13. Cui, Z., F. Zhang, X. Chen, Y. Miao, J. Li, L. Shi, et al. 2008. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Research 105(1-2): 48-55.
14. FAO. 2002. El cultivo protegido en clima mediterráneo. Estudio FAO, Producción y Protección Vegetal 90: 344.
15. Gayosso-Rodríguez, S., E. Villanueva-Couoh, M. Estrada-Botello y R. Garruña. 2018. Caracterización físico-química de mezclas de residuos orgánicos utilizados como sustratos agrícolas. Bioagro 30(3): 179-190.
16. Gribble, K., J. Conroy, P. Holford y P. Milham. 2002. In vitro uptake of minerals by Gypsophila paniculata and hybrid eucalypts, and relevance to media mineral formulation. Australian Journal of Botany 50(6): 713-723.
17. Handreck, K. y N. Black. 2002. Growing Media for Ornamental Plants and Turf. UNSW Press. Sydney, Australia. 551 p.
18. Hernández, T., C. Chocano, J. Moreno y C. García. 2016. Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops-Effects on soil and plant. Soil and Tillage Research 160: 14-22.
19. Igathinathane, C., L. Pordesimo y W. Batchelor. 2009. Major orthogonal dimensions measurement of food grains by machine vision using ImageJ. Food Research International 42(1): 76-84.
20. ICA (Instituto Colombiano Agropecuario). 2012. Manejo fitosanitario del cultivo de hortalizas Medidas para la temporada invernal. Bogotá. 44 p.
21. Jackson, B., R. Wright y M. Barnes. 2008. Pine tree substrate, nitrogen rate, particle size, and peat amendment affect poinsettia growth and substrate physical properties. HortScience 43(7): 2155-2161.
22. Kano, C., A. Cardoso y R. Boas. 2012. Phosphorus rates on yield and quality of lettuce seeds. Horticultura Brasileira 30(4): 695-698.
23. Llorach-Massana, P., P. Muñoz, M. Riera, X. Gabarrell, J. Rieradevall, J. Montero y G. Villalba. 2017. N2O emissions from protected soilless crops for more precise food and urban agriculture life cycle assessments. Journal of Cleaner Production 149: 1118-1126.
24. Lourdes Hernandez, A., A. Gasco, J. Gasco y F. Guerrero. 2005. Reuse of waste materials as growing media for ornamental plants. Bioresource Technology 96(1): 125-131.
25. Miner, J.A. 1994. Sustratos: propiedades y caracterización. Mundiprensa Libros S.A. España. 172 p.
26. Moreno, J.L. 2002. La materia orgánica en los agrosistemas: aproximación al conocimiento de la dinámica, la gestión y la reutilización de la materia orgánica en los agrosistemas. Ministerio de Agricultura, Pesca y Alimentación. España. 293 p.
27. Nazir, S., A. Younis, A. Riaz, A. Akram, N. Khan, U. Tariq, y M. Nadeem. 2017. Nutritional efficacy of various growing substrates for potted Ravenea rivularis palm production. Pakistan Journal of Nutrition 16(5): 331-340.
28. Panwar, J., N. Jain, A. Bhargava, M. Akhtar y Y. Yun. 2012. Positive effect of Zinc Oxide nanoparticles on tomato plants: A step Towards developing. Bits Digital Archive. International Conference on Environmental Research and Technology (ICERT). Biological Sciences. Penang, Malaysia.
29. Quesada, G., y C. Méndez. 2005. Evaluación de sustratos para almácigos de hortalizas. Agronomía Mesoamericana 16(2): 171-183.
30. Quintero, M. F., J. Guzmán, y J. Valenzuela. 2012. Evaluación de sustratos alternativos para el cultivo de miniclavel (Dianthus caryophyllus L.). Revista Colombiana de Ciencias Hortícolas 6(1): 76-87.
31. Raviv, M., J. Lieth, A. Bar-Tal y A. Silber. 2008. Growing Plants in Soilless Culture: Operational Conclusions. Soilless Culture: Theory and Practice. Elsevier Science. Amsterdam.
32. Rinaldi, S., B. De Lucia, L. Salvati, E. Rea, B. De Lucia, L. Salvati y E. Rea. 2014. Understanding complexity in the response of ornamental rosemary to different substrates: A multivariate analysis. Scientia Horticulturae 176: 218-224.
33. Rodríguez Macías, R., E. Alcantar González, I. Covarrubias Gilberto, F. Zamora Natera, P. García López, M. Ruiz López et al. 2010. Caracterización física y química de sustratos agrícolas a partir de bagazo de agave tequilero. Interciencia 35(7): 515-520.
34. Sahin, S. y S. Sumnu. 2009. Advances in Deep-Fat Frying of Foods. CRC Press, Boca Raton, FL.
35. Torres, A.P., D. Camberato, R. Lopez y M. Mickelbart. 2001. Produccion Comercial de Cultivos Bajo Invernadero y Vivero Medición de pH y Conductividad Eléctrica en Sustratos. Leaflet HO-237-SW. Purdue University. West Lafayette, IN,USA. 6 p.
36. Tsukagoshi, S. y Y. Shinohara. 2016. Nutrition and nutrient uptake in soilless culture systems. In: T. Kozai et al. (eds.). Plant Factory. Academic Press. New York. pp. 165-172.
37. Wei, H., B. Guenet, S. Vicca, N. Nunan, H. Asard, H. Abdelgawad et al. 2014. High clay content accelerates the decomposition of fresh organic matter in artificial soils. Soil Biology and Biochemistry 77: 100-108.
38. Zamora Morales, B.P., P. Sánchez García, V. Volke Haller, D. Espinosa Victoria y A. Galvis Spínola. 2005. Formulación de mezclas de sustratos mediante programación lineal. Interciencia 30(6): 365-369.

Published

2020-03-28

How to Cite

Sánchez-Cardozo, J., & Díaz-Barrera, L. E. (2020). Evaluation of substrates produced from cellulose residues for propagation of ornamentals and vegetables. Bioagro, 31(1), 45-54. Retrieved from https://revistas.uclave.org/index.php/bioagro/article/view/2612