Fungi with enzymatic action against fungal diseases and growth promoting in wheat

Authors

  • Elaine Pittner Unicentro. CEP 85 040 080. Guarapuava, PR, Brazil.
  • Janaina Marek Unicentro. CEP 85 040 080. Guarapuava, PR, Brazil.
  • Douglas Bortuli Unicentro. CEP 85 040 080. Guarapuava, PR, Brazil.
  • Adriana Knob Graduate Program in Evolutionary Biology. CEP 85 040 080, Guarapuava, PR, Brazil
  • Paulo Roberto Da Silva Graduate Program in Evolutionary Biology. CEP 85 040 080, Guarapuava, PR, Brazil
  • Cláudia Regina Gobatto Graduate Program in Evolutionary Biology. CEP 85 040 080, Guarapuava, PR, Brazil
  • Leandro Alvarenga Santos Agronomy Course, Unicentro. CEP 85 040 080, Guarapuava, PR, Brazil.
  • Cacilda D. Rios Faria Unicentro. CEP 85 040 080. Guarapuava, PR, Brazil.

Keywords:

Enzymes, peroxidase, severity, superoxide dismutase

Abstract

Wheat (Triticum aestivum L.) is the most important cereal crop in the world. In Brazil, there is a socio-economic interest in increasing wheat production to supply the national demand, since its import still represents almost half of local consumption. Wheat diseases have affected the increase in its production. Some fungi, including Trichoderma species and Aspergillus japonicus, have shown promise in biological control of the pathogens. The antagonistic activity of these species against plant pathogens has been studied extensively. This research aimed at evaluating the productivity in the field, seedling development, spot blotch, gibberella and rust severity, along with the activity of the enzymes phenylalanine ammonia lyase (PAL), β-1,3-glucanase (GLU), peroxidase (POD), and superoxide dismutase (SOD) in wheat plants under soil inoculation of different fungal pathogens. When used alone, A. japonicus allowed some development of the diseases, but still it protected 25 % more than the control. The inoculation of T. tomentosum and T. viride (combined) led to the lowest severity of fungal diseases of wheat, while the inoculation of T. tomentosum (singly) resulted in the greatest development of wheat seedlings. Fungi also increased wheat yield. PAL, POD and SOD activities were higher under soil inoculation of T. tomentosum, while the activity of GLU was more expressive under inoculation of T. tomentosum and T. viride (combined).

Downloads

Download data is not yet available.

References

1. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
2. Campbell, C. and L. Madden. 1990. Introduction to Plant Disease Epidemiology. Wiley, New York.
3. Dennis, C. and J. Webster. 1971. Antagonistic properties of species groups of Trichoderma III. Hyphal interactions. Transactions of the British Mycological Society, Cambridge 57: 59-363.
4. Dutta, D., K. Puzari, R. Gogoi and P. Dutta. 2014. Endophytes: Exploitation as a Tool in Plant Protection. Brazilian Archives Biology Technology 57: 621-629.
5. Ebrahim, S., K. Usha and B. Singh. 2011. Pathogenesis related (PR) proteins in plant defense mechanism. In: A. Mendez-Vilas (ed.). Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. Formatex Research Center. Badajoz, Spain. pp. 1043-1054.
6. El-Sharkawy, H., S. Tohamey and A. Khalil. 2015. Combined effects of Streptomyces viridosporus and Trichoderma harzianum on controlling wheat leaf rust caused by Puccinia triticina. Plant Pathology Journal 14(4): 182-188.
7. Ferreira, D. 2011. Sisvar: a computer statistical analysis system. Ciênc. agrotec. 35(6): 1039-1042.
8. Foroutan, A. 2013. Evaluation of Trichoderma isolates for biological control of wheat Fusarium foot and root rot. Romanian Agricultural Research 30: 335-342.
9. Garcia Junior, D., M. Vechiato and J. Menten. 2008. Efeito de fungicidas no controle de Fusarium graminearum, germinação, emergência e altura de plântulas em sementes de trigo. Summa Phytopathologica 34: 280-283.
10. Giannopolitis, C. and S. Reis. 1977. Superoxide dismutase I. Occurrence in higher plants. Plant Physiology 59: 309-314.
11. Goldson-Barnaby, A. and C. Scaman. 2013. Purification and Characterization of Phenylalanine Ammonia Lyase from Trichosporon cutaneum. Enzyme Research 6: 670-702.
12. Guzzo, S. and E. Martins. 1996. Local and systemic induction of β-1,3-glucanase and chitinase in coffee leaves protected against Hemileia vastatrix by Bacillus thuringiensis. Journal of Phytopathology 144: 449-454.
13. Harman, G. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96: 190-194.
14. Hasan, M. 2013. Biological Control of Wheat Diseases Caused by Bipolaris sorokiniana, Fusarium graminearum and Aspergillus flavus with Antagonist’s of Trichoderma spp. Persian Gulf Crop Protection 2: 1-9.
15. Hermosa, R., A. Viterbo, I. Chet and E. Monte. 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158: 17-25.
16. Hosseyni-Moghaddam, M. and J. Soltani. 2014. Bioactivity of endophytic Trichoderma fungal species from the plant family Cupressaceae. Annals of Microbiology 64: 753-761.
17. Iftikhar, S., S. Asada, A. Rattu, A. Munir and M. Fayyaz. 2012. Screening of commercial wheat varieties to spot blotch under controlled and field conditions. Pakistan Journal Botanic 44: 361-363.
18. James, W. 1971. An illustrated series of assessment keys for plant diseases, their preparation and usage. Plant Disease 51: 2.
19. Kar, M. and D. Mishra. 1976. Catalase, peroxidase and polyphenoloxidase activities during rice leaf senescence. Plant Physiology 57:315-319.
20. Karthikeyan, M., K. Radhika, S. Mathiyazhagan, R. Braskaran, R. Semiyappan and R. Velazhahan. 2006. Induction of phenolics and defense-related enzymes in coconut (Cocos nucifera), roots treated with biocontrol agentes. Brazilian Journal Plant Physiology 18: 367-377.
21. Khan, M., M. Fatma, T. Per, N. Anjum and N. Khan. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science 6: 462.
22. Küçük, Ç., M. Kivanç, E. Kinaci and G. Kinaci. 2007. Biological efficacy of Trichoderma harzianum isolate to control some fungal pathogens of wheat (Triticum aestivum) in Turkey. Biologia, Bratislava 62: 283-286.
23. Lever, M. 1972. A new reaction for colorimetric determination of carbohydrates. Analytical Biochemistry 7: 273-279.
24. Menten, J., C. Minussi, C. Castro and H. Kimati. 1976. Efeito de alguns fungicidas no crescimento micelial de Macrophomina phaseolina (Tass.) Goid. “in vitro”. Fitopatologia Brasileira, Brasília 1(2): 57- 66.
25. Mori, C., R. Fontaneli and H. Santos. 2007. Sistemas de produção com rotação de culturas e pastagens anuais de inverno. Passo Fundo, RS, Brazil. http://www.cnpt.embrapa.br/biblio/ do/p_do90_5.htm (retrieved on January 1, 2015).
26. Muthukumar, A., A. Eswaran and G. Sangeetha. 2011. Induction of systemic resistance by mixtures of fungal and endophytic bacterial isolates against Pythium aphanidermatum. Acta Physiologic Plant 33: 1933-1944.
27. Oliveira, M., C. Varanda and M. Félix. 2016. Induced resistance during the interaction pathogen x plant and the use of resistance inducers. Phytochemistry Letters 15: 152-158.
28. Penckowski, L., J. Zagonel and E. Fernandes. 2010. Qualidade industrial do trigo em função do trinexapac-ethyl e doses de N. Ciência Agrotecnica 34: 1492-1499.
29. Perello, A., C. Monaco, M. Simon, M. Sisterna and G. Dal-Bello. 2003. Biocontrol efficacy of Trichoderma isolates for tan spot of wheat in Argentina. Crop Protection 22: 1099-1106.
30. Pérez, E., A. Bernal, P. Milanés, Y. Sierra, M. Leiva, S. Marín e O. Monteagudo. 2018. Eficiencia de Trichoderma harzianum (cepa A-34) y sus filtrados en el control de tres enfermedades fúngicas foliares en arroz. Bioagro 30(1): 17-26.
31. Puthur, J.T. 2016. Antioxidants and cellular antioxidation mechanism in plants. South Indian Journal of Biological Sciences 2: 14‐17.
32. Rodrigues, L., V. Guimarães, M. Silva, A. Junior, J. Klein and A. Costa. 2014. Características agronômicas do trigo em função de Azospirillum brasilense, ácidos húmicos e nitrogênio em casa de vegetação. Engenharia Agrícola Ambiental 18: 31-37.
33. Silva, R., J. Luz, E. Silveira and U. Cavalcante. 2006. Fungos endofíticos em Annona spp.: isolamento, caracterização enzimática e promoção do crescimento em mudas de pinha (Annona squamosa L.). Acta Bot. Bras. 20(3): 649-655.
34. Silva, A., I. Silva, F. Teixeira, S. Buzetti and M. Teixeira. 2014. Estimativa da produtividade de trigo em função da adubação nitrogenada utilizando modelagem neurofuzzy. Brasileira Engenharia Agrícola Ambiental 18: 180-187.
35. Sharma, P., K. Vignesh, R. Ramesh, K. Saravanan, S. Deep, M. Sharma, M. Saini and D. Singh. 2011. Biocontrol genes from Trichoderma species - A Review. African Journal of Biotechnology 10: 19898-19907.
36. Sharma, P., A. Patel, M. Saini and S. Deep. 2012. Field Demonstration of Trichoderma harzianum as a Plant Growth Promoter in Wheat (Triticum aestivum L). Journal of Agricultural Science 4: 65-73.
37. Shoresh, M., G. Harman and F. Mastouri. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 21-43.
38. Stack, R. and M. McMullen. 1995. A visual scale to estimate severity of Fusarium head blight in wheat. North Dakota State University of Agriculture and Applied Science, Fargo, ND, USA. 2 p.
39. Waghunde, R., R. Shelake and A. Sabalpara. 2016. Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research 11: 1952-1965.
40. White, T. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. Innis, D. Gelfand, J. Sninsky e T. White (eds.). PCR Protocols Academic Press, San Diego, USA. pp. 315-322.
41. Varga, J., J. Frisvad, S. Kocsubé, B. Brankovics, B. Tóth and R. Samson. 2011. New and revisited species in Aspergillus section Nigri. Studies in Mycology 69: 1-17.
42. Vinale, F., K. Sivasithamparam, E. Ghisalberti, R. Marra and M. Barbetti. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Molecular Plant Pathology (72): 80-86.
43.Zafari, D., M. Koushki and E. Bazgir. 2008. Biocontrol evaluation of wheat take-all disease by Trichoderma screened isolates. African Journal of Biotechnology 7(20): 3653-3659.

Published

2020-03-28

How to Cite

Pittner, E., Marek, J., Bortuli, D., Knob, A., Da Silva, P. R., Gobatto, C. R., Alvarenga Santos, L., & Rios Faria, C. D. (2020). Fungi with enzymatic action against fungal diseases and growth promoting in wheat. Bioagro, 31(1), 55-66. Retrieved from https://revistas.uclave.org/index.php/bioagro/article/view/2613