Inoculation with cyanobacteria and co-inoculation with Azospirillum brasilense on phytometrics characteristics of maize

Authors

  • Freddy Zambrano Gavilanes Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí (UTM), Portoviejo, Manabí, Ecuador.
  • Diva Souza Andrade Instituto Agronômico do Paraná (IAPAR), 86047-902, Londrina, Paraná, Brasil.
  • Claudemir Zucareli Departamento de Agronomia, Universidade Estadual de Londrina (UEL), 86057-970, Londrina, Paraná, Brasil.
  • João Sarkis Yunes Laboratório de Cianobactérias e Ficotoxinas, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), 96203-900, Rio Grande, Rio Grande do Sul, Brasil.
  • Higo Amaral Departamento de Agronomia, Centro Universitário Filadélfia (UniFil), 86020-000, Londrina, Paraná, Brasil.
  • Rafael Matias da Costa Departamento de Agronomia, Centro Universitário Filadélfia (UniFil), 86020-000, Londrina, Paraná, Brasil.
  • Danilo Raia Departamento de Agronomia, Centro Universitário Filadélfia (UniFil), 86020-000, Londrina, Paraná, Brasil.
  • Marina García Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí (UTM), Portoviejo, Manabí, Ecuador.
  • Maria de Fátima Guimarães Departamento de Agronomia, Universidade Estadual de Londrina (UEL), 86057-970, Londrina, Paraná, Brasil.

Keywords:

Anabaena sp, Calothrix brevissima, diazotrophic bacteria, Nostoc muscorum, Zea mays

Abstract

Cyanobacteria can fix atmospheric N and transform it into available forms for crops, which has increased interest in their use as inoculants. Our objective was to evaluate the influence of inoculation with cyanobacteria and co-inoculation with Azospirillum brasilense on phytometrics characteristics of maize. Two greenhouse trials were conducted; in the first, we tested the effect of inoculation (I) with Nostoc muscorum, Anabaena sp. Anabaena cylindrica, Calothrix brevissima and A. brasilense, with and without N fertilization (F) on plant and ear height, stem diameter, root volume, leaf area, biomass of root, stem and leaf, and foliar content of chlorophyll and N, P, K, on corn variety IPR164; in the second, the effect of co-inoculation with these cyanobacteria and A. brasilense on the mentioned variables in two maize genotypes (variety IPR 164 and hybrid DOW 2B587) was evaluated. In the first trial there were significant isolated effects for I and F but the interaction I x F was only significant for the leaf area; the inoculation caused increases on growth variables and content of chlorophyll b; the most effective inoculation treatments were with N. muscorum and A. cylindrica. In the second trial, the co-inoculation with A. cylindrica + A. brasilense caused the best response, independently of the genotype. These results show a stimulating effect of cyanobacteria to promote growth in maize.

Downloads

Download data is not yet available.

References

1. Abed, R.M., S. Dobretsov y K. Sudesh. 2009. Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology 106(1): 1-12.
2. Barrios, M. y C. Basso, C. 2018. Efecto de la fertilización nitrogenada sobre componentes del rendimiento y calidad nutricional del grano de seis híbridos de maíz. Bioagro 30(1): 39-48.
3. Bashan, Y., L. De-Bashan, S. Prabhu y J. Hernandez. 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil 378(1-2): 1-33.
4. Beleze, J.R., L.M. Zeoula, U. Cecato, P.H. Dian, E.N. Martins y A.D. Falcão. 2003. Avaliação de cinco híbridos de milho (Zea mays, L.) em diferentes estádios de maturação. 1. Produtividade, características morfológicas e correlações. Revista Brasileira de Zootecnia 32(3): 529-537.
5. Böhm, W. 1979. Methods of studying root systems. Ecological studies 33. Springer-Verlag. Berlin.
6. Brouwer, P., A. Bräutigam, V. Buijs, A. Tazelaar, A. Van der Werf, U. Schlüter y H. Schluepmann. 2017. Metabolic adaptation, a specialized leaf organ structure and vascular responses to diurnal N2 fixation by Nostoc azollae sustain the astonishing productivity of Azolla ferns without nitrogen fertilizer. Frontiers in Plant Science 8: 442.
7. Duchoud, F., D. Chuang y J. Liao. 2017. Cyanobacteria as a host organism. Industrial biotechnology: Microorganisms. pp. 581-604.
8. Embrapa (Empresa Brasileira de Pesquisa Agropecuária). 1997. Manual de métodos de análises de solo. Ministério da Agricultura e do Abastecimento. Rio de Janeiro. 212 p.
9. Ferreira, D.F. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia (UFLA) 35(6): 1039-1042.
10. Ghazal, F., M. El-Koomy, K. Abdel- Kawi y M. Soliman. 2013. Impact of cyanobacteria, humic acid and nitrogen levels on maize (Zea mays L.) yield and biological activity of the rhizosphere in sandy soils. Journal of American Science 9(2): 46-55.
11. Guimaraes, D.P., L.M. Sans y A.V. Moraes. 2002. Estimativa da área foliar de cultivares de milho. XXIV Congresso Nacional de Milho e Sorgo. 1 a 5 de setembro, Embrapa. Florianópolis-SC. 5 p. https://ainfo.cnptia. embrapa.br/digital/bitstrea m/item/34888/1/Estimativa-area.pdf (consulta del 03-06-2019).
12. Herschkovitz, Y., A. Lerner, Y. Davidov, M. Rothballer, A. Hartmann, Y. Okon y E. Jurkevitch. 2005. Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microbial Ecology 50(2): 277-288.
13. Horn, D., P.R. Ernani, L. Sangoi, C. Schweitzer y P.C. Cassol. 2006. Parâmetros cinéticos e morfológicos da absorção de nutrientes em cultivares de milho com variabilidade genética contrastante. Revista Brasileira Ciência do Solo 30(1): 77-85.
14. Jhala, Y., D. Panpatte y R. Vyas. 2017. Cyanobacteria: Source of organic fertilizers for plant growth. In: D.G. Panpatte et al. (eds.). Microorganisms for Green Revolution. pp. 253-264.
15. Libório, P.H. 2016. Inoculação com Azospirillum brasilense associada á adubação nitrogenada reduzida em híbridos de milho. Nucleus 13(2): 241-252.
16. Ladha, J., A. Tirol-Padre, C. Reddy, K. Cassman, S. Verma, D. Powlson et al. 2016. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Scientific Reports 6 (19355). 9 p.
17. Mahmoud, S.A. 1999. Promotive effect of the Cyanobacterium Nostoc muscorum on the growth of some crop plants. Acta Microbiologica Polonica (Poland) 48(2): 163-171.
18. Miyazawa, M., M.A. Pavan y M.F. Bloch. 1992. Análise química de tecido vegetal. Instituto Agronômico do Paraná (IAPAR), Londrina. Circular 74. 17 p.
19. Mohan, A., B. Kumar y D. Nath 2015. Cyanobacterial consortium in the improvement of maize crop. Int. J Curr. Microbiol. Appl. Sci. 4: 264-274.
20. Mulder, E.G. 1954. Effect of mineral nutrition on lodging of cereals. Plant and Soil 5(3): 246-306.
21. Muro‐Pastor, A.M., M. Brenes‐Álvarez y A. Vioque. 2017. A combinatorial strategy of alternative promoter use during differentiation of a heterocystous cyanobacteria. Environmental Microbiology Reports 9(4): 449-458.
22. Pandolfo, C., G. Vogt, A. Balbinot Júnior, G. Gallotti y S. Zoldan. 2015. Desempenho de milho inoculado com Azospirillum brasiliense associado a doses de nitrogênio em cobertura. Agropecuária Catarinense 27(3): 94-99.
23. Pathak, J., P. Maurya, S. Singh, D. Häder y R. Sinha. 2018. Cyanobacterial Farming for Environment Friendly Sustainable Agriculture Practices: Innovations and Perspectives. Frontiers in Environmental Science 6, artículo 7, 13 p.
24. Picazevicz, A., J. Kusdra, y A.D. Moreno. 2017. Maize growth in response to Azospirillum brasilense, Rhizobium tropici, molybdenum and nitrogen. Revista Brasileira de Engenharia Agrícola e Ambiental 21(9): 623-627.
25. Possamai, J.M., C.M. Souza y J.C. Galvão. 2001. Sistemas de preparo do solo para o cultivo do milho safrinha. Bragantia 60: 79-82.
26. Prasanna, R., F. Hossain, S. Babu, N. Bidyarani, A. Adak y S. Verma. 2015. Prospecting cyanobacterial formulations as plant-growth-promoting agents for maize hybrids. South African Journal of Plant and Soil 32(4): 199-207.
27. Sholkamy, E., H. El-Komy, A. Al-Arfaj, A. Abdel-Megeed y A. Mostafa. 2012. Potential role of Nostoc muscorum and Nostoc rivulare as biofertilizers for the enhancement of maize growth under different doses of N-fertilizer. African Journal of Microbiology Research 6(48): 7435-7448.
28. Stanier, R., R. Kunisawa, M. Mandel y G. Cohen-Bazire. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews 35(2): 171.
29. Witham, F., D. Blaydes y R. Devlin. 1971. Chlorophyll absorption spectrum and quantitative determinations. In: Experiments in Plant Physiology. Von Nostra and Ren Fold. New York. pp. 55-56.
30. Zhao, D., K. Reddy, V. Kakani, J. Read y G. Carter. 2003. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant and Soil 257(1): 205-218.

Published

2020-04-06

How to Cite

Zambrano Gavilanes, F., Souza Andrade, D., Zucareli, C., Sarkis Yunes, J., Amaral, H., Matias da Costa, R., Raia, D., García, M., & Guimarães, M. de F. (2020). Inoculation with cyanobacteria and co-inoculation with Azospirillum brasilense on phytometrics characteristics of maize. Bioagro, 31(3), 193-202. Retrieved from https://revistas.uclave.org/index.php/bioagro/article/view/2651