Estimation of variance components and genetics parameters in a segregating population of tropical maize
Keywords:
Degree of dominance, genetic variance, heritability, yield grain, Zea maysAbstract
The estimation of variance components and genetic parameters is useful for directing the selection process in breeding programs. The present investigation was carried out to estimate the components of the genetic variance, average degree of dominance and the heritability for the yield grain and plant traits, in a tropical maize (Zea mays L.) population formed from two lines genetically divergent. One hundred progenies from backcrossing were evaluated in different environments in the municipality Piracicaba, SP, Brazil, in the 2008-2009 and 2009-2010 growing seasons, through an α-lattice design on a factorial scheme with two replications per environment. Estimates of the additive variance, dominance and the additive by environments interaction were significantly different from zero (P≤0.05) for all traits. Estimates of additive variance were significantly (P≤0.05) higher than those of dominance variance for all traits, explaining from 70 to 94% of the total genetic variance. The average degree of dominance ranged from 0.35 (root and stalk lodging) to 0.93 (days to anthesis and days to silk emergence), indicating partial dominance of genes that govern the traits studied. The heritability, at a mean level for all traits, showed high values, ranging from0.58 to 0.96, with a value of 0.94 for the grain yield. The high value of the heritability coefficients implies the possibility of an effective selection for the genetic improvement of grain yield and plant characteristics in the population studied.
Downloads
References
2. Abou-Deif, M. 2007. Estimation of gene effects on some agronomic characters in five hybrids and six populations of maize (Zea mays L.). World Journal of Agricultural Science 3(1): 86-90.
3. Aguiar, A., L. Carlini-Garcia, A. Resende, M. Santos, A. García y C. de Souza. 2003. Combining ability of inbred lines of maize and stability of their respective single-crosses. Scientia Agrícola 60(1): 83-89.
4. Almeida, G., D. Makumbi, C. Magorokosho, S. Nair, A. Borem, J. Ribaut et al. 2013. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor. Appl. Genet. 126(3): 583-600.
5. Alves, G., M. Ramalho y C. de Souza. 2002. Alterações nas propriedades genéticas da população CMS-39 submetidas a seleção massal para prolificidade. Revista Brasileira de Milho e Sorgo 1(3): 89-101.
6. Badu-Apraku, B., M. Fakorede, A. Menkir, A. Kamara y A. Adam. 2004. Effects of drought screening methodology on genetic variances and covariances in Pool 16 DT maize population. Journal of Agricultural Science 142(4): 445-452.
7. Belicuas, P. 2009. Estudo da herança dos caracteres stay-green, produção e seus componentes emmilho utilizando o delineamento III e mapeamento de QTL. Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP. 97 p.
8. Bello, O. y G. Olaoye. 2009. Combining ability for maize grain yield and other agronomic characters in a typical southern guinea savanna ecology of Nigeria. African Journal of Biotechnology 8(11): 2518-2522.
9. Bernardo, R. 2002. Breeding for Quantitative Traits in Plants. Stemma Press. Woodbury, MN, USA. 369 p.
10. Beyene, Y., K. Semagn, S. Mugo, B. Prasanna, A. Tarekegne, J. Gakunga et al. 2016. Performance and grain yield stability of maize populations developed using marker-assisted recurrent selection and pedigree selection procedures. Euphytica 208(2): 285-297.
11. Bocanski, J., Z. Sreckov, A. Nastasic, M. Ivanovic, I. Djalovic y M. Vukosavljev. 2010. Mode of inheritance and combining abilities for kernel row number, kernel number for per row and grain yield in maize (Zea mays L.). Genetika 42(1): 167-176.
12. Burdick, R. y F. Graybill. 1992. Confidence Intervals on Variance Components. Marcel Dekker. New York.
13. Câmara, T., G. Alves, M. Santos, J. Moreira, y C. de Souza. 2007. Parámetros genéticos de caracteres relacionados à tolerância à deficiência hídrica emmilho tropical. Bragantia 66(4): 595-603.
14. Ceballos, H., S. Pandey, L. Narro y J. Pérez-Velázquez. 1998. Additive, dominant, and epistatic effects for maize grain yield in acid and non-acid soils. Theoretical and Applied Genetics 96(5): 662-668.
15. Cockerham, C. y Z. Zeng. 1996. Design III with marker loci. Genetics 143(3): 1437-1456.
16. Comstock, R. y H. Robinson. 1952. Estimation of average dominance of genes. In: J. Gowen (ed.). Heterosis. Iowa State College Press. Ames, Iowa. pp. 494-516.
17. Cruz, C., A. Regazzi y P. Carneiro. 2004. Modelos biométricos aplicados aomelhoramento genético. Ed. Universidade Federal de Viçosa. Viçosa, Minas Gerais, Brasil. 390 p.
18. Dudley, J. 1994. Linkage desequilibrium in crosses between Illinois maize strains divergently selected for protein percentage. Theoretical Applied of Genetics 87(8): 1016-1020.
19. Falconer, A. 1989. Introduction to Quantitative Genetics. Longman, New York.
20. Hallauer, A., M. Carena y J. Miranda-Filho. 2010. Quantitative Genetics in Maize Breeding. Third edition. Iowa State University Press. Ames, Iowa.
21. Han, G. y A. Hallauer. 1989. Estimates of genetic variability in maize F2 populations. Journal of Iowa Academy Science 96(1): 14-19.
22. Kearsey, M. y J. Jinks. 1968. A general method of detecting additive, dominance and epistatic variation for metrical traits. Heredity 23(3): 403-409.
23. Knapp, S., W. Stroup y W. Ross. 1985. Exact confidence intervals for heredity on a progeny mean basis. Crop Sci. 25(1): 192-194.
24. Lamkey, K., B. Schinicker y A. Melchinger. 1995. Epistasis in an elite maize hybrid and choice of generation for inbred line development. Crop Sci. 35(5): 1271-1281.
25. Lima, M., C. de Souza, D. Bento, A. de Souza y L. Carlini-García. 2006. Mapping QTL for grain yield and plant traits in a tropical maize population. Molecular breeding 17:227-239.
26. Malvar, R., A. Ordás, P. Revilla y M. Cartea. 1996. Estimates of genetic variances in two spanish populations of maize. Crop Sci. 36(2): 291-295.
27. Marker, S. 2006. Genetic analysis of yield and other characters in two populations of maize (Zea mays). The Indian Journal of Agricultural Science 79(8): 512-514.
28. Môro, G.2011, Uso da seleção genômica e fenotípica emlinhagens para a predição de teste crossesemmilho. Tese, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo. 116.
29. Raposo, F. y M. Ramalho. 2004. Componentes de variância genética de populações derivadas de híbridos simples de milho. Revista Brasileira de Milho e Sorgo 3(3): 402-413.
30. Santos, M., G. Môro, A. Aguiar y C. de Souza. 2005. Responses to reciprocal recurrent selection and changes in genetic variability in IG-1 and IG-2 maize populations. Genetics and Molecular Biology 28(4): 781-788.
31. Satterthwaite, F. 1946. An approximate distribution of estimates of variance components. Biom. Bull. 2(6): 110-114.
32. Searle, R., G. Casella y C. McCulloch. 1992. Variance components. Wiley. New York.
33. Silva, A., C. de Souza, A. Aguiar y A. Souza. 2004. Estimates of genetic variance and level of dominance in a tropical maize population. I. Grain yield and plant traits. Maydica 49: 65-71.
34. Silva, J. y A. Hallauer. 1975. Estimation of epistatic variance in Iowa stiff stalk synthetic maize. J. of Heredity 66(5): 290-296.
35. Silva, R., P. García, D. Silva y C. de Souza. 2017. Epistasis para producción de granos y caracteres de la planta en una población de maíz tropical. Bioagro 29(2): 83-94.
36. Singh, S. y B. Gupta. 2008. Triple test cross analysis to detect of epistasis for morpho-physiological traits related to drought tolerance and yield components in maize (Zea mays L.). Journal of Research 7(2): 202-209.
37. Sobierajski, G., P. Kageyama y A. Sebbenn.2006. Estimates of genetic parameters in Mimosa scabrella populations by random and mixed reproduction models. Crop Breeding and Applied Biotechnology 6: 47-54.
38. Stansfield, W. 1974. Genética. São Paulo: McGraw-Hill do Brasil.
39. Sughroue, J. y A. Hallauer. 1997. Analysis of the diallel mating design for maize inbred lines. Crop Sci. 37(2): 400-405.
40. Vencovsky, R y P.Barriga. 1992. Genética Biométrica Aplicada ao Fitomelhoramento. Sociedade Brasileira de Genética. Ribeirão Preto, Sao Paolo. 496 p.
41. Wolf, D., L. Peternelli y A. Hallauer. 2000. Estimates of geneticvariance in an F2 maizepopulation. J. of Heredity 91(5): 384-391.
42. Zdunic, Z., A. Mijic, K. Dugalic, D. Simic, J. Brkic y A. Marjanovic-Jeromela. 2008. Genetic analysis of grain yield and starch content in nine maize populations. Turk. J. of Agric. and Forestry 32(6): 495-500.
Published
How to Cite
Issue
Section
Rights of the author/s are from the year of publication
This work is under the license:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors not necesarily reflect the position of the publisher or UCLA. The total or partial reproduction of the texts published in this journal is authorized, as long as the complete source and the electronic address of this journal is cited. Authors have the right to use their articles for any purpose as long as it is done for non-profit purposes. Authors can publish the final version of their work on internet or any other medium, after it has been published in this journal.
Bioagro reserves the right to make textual modifications and technical adjustments to the figures of the manuscripts, in accordance with the style and specifications of the journal.