Yield of cocoa under different agroforestry systems in a dry tropical forest in western Colombia

Authors

DOI:

https://doi.org/10.51372/bioagro341.4

Keywords:

Drought stress, Gmelina arborea, Theobromoa cacao

Abstract

The expansion and modernization of the cocoa area under new strategies, such as the use of adapted genetic material and the establishment of Agroforestry Systems with cocoa, under criteria of competitiveness and sustainability, require selecting sites with adequate biophysical conditions, which facilitate the optimization of resources for production. In this sense, we conducted a study in the Estación Agraria Cotové, of the Universidad Nacional de Colombia, located in a tropical dry forest life zone (TDF), at 540 meters of elevation, with an average temperature of 27 ºC, average annual precipitation annual of 1,031 mm and relative humidity less than 70 %. The yield components and productive potential of four cocoa clones, ICS 95, TSH565, CCN 51, and ICS 60, were evaluated. The cocoa clones were planted under two controlled sunlight habitats, generated by the timber species Gmelina arborea Roxb. (single-row and double-row arrangement), and two different canopy management of the cocoa plants (plagiotropic and orthotropic growth stimulus). The clones TSH 565 and CCN 51 showed the highest yields in the two harvest years. ICS 95 showed the lowest bean index. Regarding the pod index, no differences were observed between the cocoa clones. Clones TSH 565 and CCN 51 stood out as the earliest and most productive clones.

Downloads

Download data is not yet available.

References

Almeida, A.F. and R.R. Valle. 2007. Ecophysiology of the cacao tree. Brazilian Journal of Plant Physiology 19(4): 425-448.

Aránzazu, F., N. Martínez, D. Guarín, and G. Palencia. 2009. Materiales de cacao en Colombia, su compatibilidad sexual y Modelos de siembra. Unión temporal de cacao de Colombia uno, Fedecacao-Corpoica. Bucaramanga. 8, 9, 10 p.

Bita, C.E. and T. Gerats. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273.

Cadavid-Vélez, S. 2011. Características de compatibilidad sexual de algunos clones de cacao y su aplicación en siembras comerciales. Compañía Nacional de Chocolates. 28 p. https://n9.cl/8y2qh (retrieved Oct. 2021)

Ceccarelli, V., T. Fremout, D. Zavaleta, S. Lastra, S. Imán Correa, E. Arévalo-Gardini et al. 2021. Climate change impact on cultivated and wild cacao in Peru and the search of climate change-tolerant genotypes. Divers Distrib. 2021,00: 1-15.

Cilas, C. and P. Bastide. 2020. Challenges to cocoa production in the face of climate change and the spread of pests and diseases. Agronomy 10: 1232.

De Mendiburu, F. 2013. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.1-4. In: The Comprehensive R Archive Network. 155 p. https://n9.cl/zr7jc (retrieved Oct. 2021).

FAO (Organización Mundial para la Alimentación y la Agricultura). 2010. “Climate-Smart” Agriculture. Policies, Practices and Financing for Food Security, Adaptation and Mitigation. FAO, Rome. https://n9.cl/ppybw (retrieved Oct. 2021).

FAO (Organización Mundial para la Alimentación y la Agricultura). 2020. FAOSTAT Online Database. FAO, Rome. https://n9.cl/dyh1h (retrieved on Mar. 2020).

FEDECACAO (Federación Colombiana de Cacaoteros). 2012. Guía técnica para el cultivo del cacao. 5° edición. Ediciones LCB. Bogotá.

Fernández, M. 2013. Efectos del cambio climático en la producción y rendimientos de cultivos por sectores. Fondo financiero de proyectos de desarrollo-Fonade e Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM. 6 p.

García, J.L. and L.P.F. Moreno. 2016. Respuestas fisiológicas de Theobroma cacao L. en etapa de vivero a la disponibilidad de agua en el suelo. Acta Agronómica 65(1): 44-50.

Gateau-Rey, L., E. Tanner, B, Rapidel, J. Marelli, and S. Royaert. 2018. Climate change could threaten cocoa production: Effects of 2015-16 El Niño-related drought on cocoa agroforests in Bahia, Brazil. PloS One 13(7): e0200454.

IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales). 2020. Datos Hidrometeorológicos. Bogotá. https://n9.cl/r7z3a (retrieved Dec. 2020).

Läderach P., A. Martinez-Valle, G. Schroth, and N. Castro. 2013. Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire. ClimChang 119(3-4): 841-854.

Lahive, F., P. Hadley and A.J. Daymond. 2019. The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agronomy for Sustainable Development, 39(1): 5.

Mazo, D.L.A., J.E. Rubiano, and A. Castro. 2016. Sistemas agroforestales como estrategia para el manejo de ecosistemas de Bosque seco Tropical en el suroccidente colombiano utilizando los SIG. Cuadernos de Geografía: Revista Colombiana de Geografía, 25(1): 65-77.

Mora, R.J., O.H. Burbano, and P.W. Ballesteros. 2011. Efecto de la fertilización con diversas fuentes sobre el rendimiento de cacao. Rev. Cien. Agríc. 28(2):81-94.

Montagnini F., E. Somarriba, E. Murgueitio, H. Fassola, and B. Eibl. 2015. Sistemas Agroforestales. Funciones Productivas, Socioeconómicas y Ambientales. Serie técnica. Informe técnico 402. CATIE, Turrialba, Costa Rica. Editorial CIPAV, Cali, Colombia. 454 p.

Montoya, I., L. Montoya and P. Lowy. 2015. Oportunidades para la actividad cacaotera en el municipio de Tumaco, Nariño, Colombia. Entramado 11(1): 48-59.

Niether W., L. Armengot, C. Andres, M. Schneider, and G. Gerold. 2018. Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Annals of Forest Science 75(2): 38.

Niether W., J. Jacobi, W. Blaser, C. Andres, and L. Armengot. 2020. Cocoa agroforestry systems versus monocultures: a multi-dimensional meta-analysis. Environmental Research Letters 15(10):104085.

Pabón-Caicedo J.D. and J.C. Alarcón-Hincapié. 2016. El efecto del cambio climático sobre las zonas áridas y semiáridas de Colombia. Intercard/Intergis-UDC (en ruso) 22: 56-62.

Perea V.A., G.N. Martínez, H.F. Aránzazu, and C.T. Cadena. 2013. Características de calidad del cacao de Colombia-Catálogo de 26 cultivares. Fedecacao, Bogotá. 107 p.

Quintana, L. F. F., S. Casteblanco, A. Jérez, and N. Guerrero. 2015. Caracterización de tres índices de cosecha de cacao de los clones CCN 51, ICS 60 e ICS 95, en la montaña santandereana, Colombia. Revista de Investigación Agraria y Ambiental 6: 259-262.

R Core Team. 2017. A Language and Environment for Statistical Computing. In: R Foundation for Statistical Computing. 2673 p. https://n9.cl/0gsyd (retrieved on Jan. 2020).

Schroth G., P. Laderach, J. Dempewolf, S. Philpott, J. Haggar, H. Eakin, T. Castillejos, M.J. Garcia, P.L. Soto, R. Hernandez, A. Eitzinger, and J. Ramirez-Villegas. 2009. Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitigation and Adaptation Strategies for Global Change 14: 605-625.

Schroth, G., P. Läderach, A.I. Martinez-Valle, C. Christian Bunn, and L. Jassogne. 2016. Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Sci. Total Environ. 556: 231-241.

Schwendenmann L., E. Veldkamp, G. Moser, D. Hölscher, M. Köhler, Y. Clough, et al. 2010. Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Glob. Change Biol. 16: 1515–1530.

Soni, M. L., V. Subbulakshmi, K.R. Sheetal, N.D. Yadava, and J.C. Dagar. 2017. Agroforestry for increasing farm productivity in water-stressed ecologies. In: J.C. Dagar and V.P. Tewari (eds.). Agroforestry. Springer, Singapore. pp. 369-411.

Vaast, P. and E. Somarriba. 2014. Trade-offs between crop intensification and ecosystem services: The role of agroforestry in cocoa cultivation. Agroforestry Systems 88: 947-56.

Yang, B., X. Meng, A.K. Singh, P. Wang, L. Song, S. Zakari, and W. Liu. 2020. Intercrops improve surface water availability in rubber-based agroforestry systems. Agriculture, Ecosystems & Environment 298: 106937.

Published

2021-12-29

How to Cite

Escobar Ramírez, C. H., Córdoba-Gaona, Óscar de J., Correa Londoño, G. A., & Martínez Bustamante, E. G. (2021). Yield of cocoa under different agroforestry systems in a dry tropical forest in western Colombia. Bioagro, 34(1), 39-50. https://doi.org/10.51372/bioagro341.4

Issue

Section

Artículos

Most read articles by the same author(s)