Biofertilization with Trichoderma strains on nutrition of quinoa (Chenopodium quinoa willd) Salcedo INIA under greenhouse

Authors

DOI:

https://doi.org/10.51372/bioagro352.3

Keywords:

Beneficial microorganisms, nitrogen, phosphorus, potassium, soil fertility

Abstract

Quinoa is a crop with high economic and social potential in the Puno Region, Peru; however, its production is affected by low soil fertility. One way to deal with this problem, without affecting the environment, is through the use of beneficial microorganisms. The objective of the study was to evaluate the effect of Trichoderma sp. on N, P and K levels in plants and soil. The research was carried out in the Phytopathology Laboratory and greenhouse of the Professional School of Agricultural Engineering in the city of Puno, from January to July 2015. Five strains of Trichoderma sp. were inoculated in quinoa var. Salcedo-INIA plants by soil application or using pelleted seed. At the end of the crop cycle (six months), the levels of N, P and K were evaluated both in the plant tissue and in soil. No effects of Trichoderma inoculation on soil nutrient levels were detected, but the inoculated plants showed higher P and K contents than the control (p≤0.05). The results did not support the thesis of the solubilizing effect of Trichoderma on soil nutrients, but support the idea that the plant improved its efficiency in nutrient absorption attributed to the greater growth of the root system.

Downloads

Download data is not yet available.

References

Banjac, N., R. Stanisavljević, I. Dimkiz., N. Velijević, M. Sokovi, y A. Ćirić, 2021. Trichoderma harzianum IS005-12 promotes germination, seedling growth and seedborne fungi suppression in Italian ryegrass forage. Plant, Soil and Environment 67(3): 130-136.

Basantes, E., D. Lazo y D. Obando 2015. Extracción del nitrógeno y calcio en dos variedades quinua (Chenopodium quinua), El Prado-Sangolquí. Congreso de Ciencia y Tecnología ESPE 10(1): 1-6.

Bhandari, S., K.R. Pandey, Y.R. Joshi y S. K. Lamichhane. 2021. An Overview of Multifaceted Role of Trichoderma spp. For Sustainable Agriculture. Archives of Agriculture and Environmental Science 6(1):72-79.

Bryson, G., H. Mills, D. Sasseville, J.B. Jones (Jr.) y A. Barker. 2014. Plant Analysis Handbook III. Micro-Macro Pub. Athens, GA.

Chávez-García, J.A., C. Aguilar-Carpio, P. Juárez-López, J.A.S. Escalante-Estrada, M.C. Rueda-Barrientos y Y. Tamayo-Aguilar. 2023. Growth analysis of tarragon (Artemisia dracunculus L.) in response to Trichoderma harzianum and Glomus cubense. Bioagro 35(1): 75-80.

Cristóbal-Alejo, J., F.A. Moo-Koh, J.M. Tun-Súarez, A. Reyes-Ramírez y M. Gamboa-Angulo. 2021. Efecto de la interacción dual de especies de Trichoderma en el crecimiento de Capsicum chinense Jacq. Agrociencia 55: 681-693.

Dehariya, K., I.A. Sheikh, D. Vyas y A. Shukla. 2018. Trichoderma and arbuscular mycorrhizal fungi based biocontrol of Fusarium udum Butler and their growth promotion effects on pigeon pea. J. Agric. Sci. Technol. 17: 505-517.

Diánez, F., M. Santos, F. Carretero y F. Marín 2018. Biostimulant activity of Trichoderma saturnisporum in melon (Cucumis melo). Hortscience 53: 810-815.

Díaz, G., G. Rodríguez, L. Montana, T. Miranda, C. Basso y M. Arcia 2020. Efecto de la aplicación de bioestimulantes y Trichoderma sobre el crecimiento en plántulas de maracuyá (Passiflora edulis Sims) en vivero. Bioagro 32(3): 195-204.

DRA-Puno (Dirección Regional Agraria, Puno) 2015. Diagnóstico de las cadenas productivas de los cultivos de quinua, cañihua, habas, tarwi forrajes, papa, café y frutales. Puno–Perú. 277 p. https://n9.cl/c91w5 (consulta de enero 9, 2023).

Freitas-Chagas Jr, A., L.F. Borges-Chagas, L. de Oliveira-Miller y J.C. de Oliveira, 2019. Efficiency of Trichoderma asperellum UFT 201 as plant growth promoter in soybean. Afr. J. Agric. Res. 14(5): 263-271.

Gómez-Pando, L. y E. Aguilar-Castellanos 2016. Guía de cultivo de la quinua. FAO y Universidad Nacional Agraria La Molina, Lima. 130 p. https://www.fao.org/3/i5374s/i5374s.pdf

Halifu, S., X. Deng, X. Song y R. Song. 2019. Efects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. Mongolica annual seedlings. Forests 10: 758.

Havlin, J., S. Tisdale, W. Nelson y J. Beaton. 2013. Soil Fertility and Fertilizers. Pearson. Boston, MA.

Khoshmanzar, E., N. Aliasgharzad, M.R: Neyshabouri, B. Khoshru, M. Arzanlou y B. Asgari-Lajayer. 2020. Effects of Trichoderma isolates on tomato growth and inducing its tolerance to water-deficit stress. Int. J. Environ. Sci. Technol. 17: 869-878

Kreuser, W.C. 2015. Simplifying soil test interpretations for turf professionals. University of Nebraska–Lincoln (UNL) Extension public. http://turf. unl. edu/NebGuides/ g2265. pdf.

León-Ttacca, B., N. Ortiz Calcina, L. Pauro-Flores, R. Borja-Loza, P. Mendoza-Coari y L.A. Palao-Iturregui. 2022. Métodos de inoculación de cepas nativas de Trichoderma sp. y su efecto sobre el crecimiento y rendimiento de quinua. Rev. Fac. Agron. (LUZ) 39(4): e223955.

López-Bucio, J., R. Pelagio-Flores y A. Herrera-Estrella, A. 2015. Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 196: 109-123.

López-Valenzuela, B., O. Tzintzun-Camacho, A. Armenta-Bojórquez, F. Valenzuela-Escoboza, G. Lizárraga-Sánchez, J. Ruelas-Islas y D. González-Mendoza. 2022. Micro-organismos del género Trichoderma productores de fitohormonas y antagonistas de fito-patógenos. Bioagro 34(2): 163-172.

Mamani-Reynoso, F. y S. Aliaga-Zeballos 2017. Efectos de aplicación con biol en la producción de quinua (Chenopodium quinoa Willd). Apthapi (UMSA) 3(3): 713-717.

Mateu-Mateo, W. 2019. Fuentes y dosis de abonos orgánicos en el rendimiento de Chenopodium Quinoa Willd. Canaán 2750 msnm. Revista Investigación 27(1): 61-66.

Méndez, J. 2006. Efecto de la aplicación de Trichoderma harzianum y Paecilomyces lilacinus en el rendimiento de lechuga orgánica. Escuela Agrícola Panamericana El Zamorano – Honduras. 10 -231.

Mesa, R.J., C:J. Gómez, C.O. Rodríguez, S.E. Parets y O.R Soto. 2006. Efecto de Trichoderma y micorrizas en la producción de posturas de Carica papaya L. Centro Agrícola. Universidad de Cienfuegos–Cuba 33(3): 75-81.

Purwantisari, S., R.S Ferniah, Y. Nurchayati y S.N. Jannah. 2022. Effects of plant growth-promoting rhizobacteria and Trichoderma sp. on potato growth on medium plains. KnE Life Sciences 2022: 513-520.

Rakibuzzaman, M., M.H. Akand, M. Siddika y A.F. Uddin. 2021. Impact of Trichoderma application as bio-stimulator on disease suppres-sion, growth and yield of potato. J. of Bioscience and Agriculture Research 27(1): 2252-2257.

Sánchez-Montesinos, B. F. Diánez, A. Moreno-Gavíra, F.J. Gea y M. Santos. 2021. Role of Trichoderma aggressivum f. europaeum as plant-growth promoter in horticulture. Agronomy 10(7): 1004.

Soto, M., R. Allende y V. Romero. 2020. Estudio comparativo en rendimiento y calidad de 12 variedades de quinua orgánica en la comunidad campesina de San Antonio de Manallasac, Ayacucho. Revista Campus 25(29): 57-66.

Vinale, F.; K. Sivasithamparam; E.L Ghisalberti; R. Marra; S.L. Woo y M. Lorito. 2008 Trichoderma-plant-pathogen interactions. Soil Bioloy& Biochemistry 40:1-10.

Yánez, L.E. 2021. Plantas y microorganismos rizosféricos: Una vía sostenible para generar crecimiento vegetal. Revista Científica Interdisciplinaria Investigación y Saberes 11(3): 102-122.

Ye, L., X. Zhao, E. Bao, J. Li, Z. Zou y K. Cao. 2020. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports 10(1): 1-11.

Published

2023-04-30

How to Cite

Ortiz-Calcina, N., Leon-Ttacca, B., Pauro-Flores, L., Borja-Loza, R., Mendoza-Coari, P. P., & Palao, L. A. (2023). Biofertilization with Trichoderma strains on nutrition of quinoa (Chenopodium quinoa willd) Salcedo INIA under greenhouse. Bioagro, 35(2), 105-112. https://doi.org/10.51372/bioagro352.3

Issue

Section

Artículos