Phenotypic divergences and variation between genetic collection of tomato, based on heterogeneity and environment

Authors

DOI:

https://doi.org/10.51372/bioagro353.8

Keywords:

Genotype-environment interaction, interpopulation hybrids, phenotypic variability

Abstract

The homogeneous improved varieties present little genetic diversity; however, the traditional varieties have high heterogeneity in agronomic characters, fruit composition and have been used in genetic improvement. The objective was to evaluate the variation and phenotypic divergence of three groups of genetic populations with different magnitude of heterogeneity, in response to two greenhouse production cycles. Fourteen triple interpopulation hybrids, four advanced lines and four commercial hybrids were sowed under a randomized block design with four replications. The evaluated variables were plant height at 30, 60, and 90 days after transplant (ddt), number of days to flowering, fruiting and maturation of the first and fifth branch, polar and equatorial diameter, average weight, number of fruits and yield to the fifth branch. ANOVA and means comparison by the Tukey test were performed. Among the genetic populations, the behavior of advanced lines and interpopulation hybrids was similar in plant height, physiological and fruit characters, with favorable significant differences with respect to commercial hybrids. Among genotypes, the days to flowering, fruiting and ripening of fruits from the first to fifth branch were higher in the September 2017-March 2018 cycle compared to the March-July 2017 cycle. In the cycle-genetic population interaction, regarding equatorial diameter, the response of the interpopulation hybrids H-76, H-77, H-79, H-90 and H-98 was outstanding when presenting kidney-type fruits. The results indicate that the effect of the environment or evaluation cycles represented the largest proportion of the total phenotypic variance, followed by the effect of groups of genetic populations and genotypes within genetic populations.

Downloads

Download data is not yet available.

References

Bai, Y. y P. Lindhout. 2007. Domestication and breeding of tomatoes: What have we gained and what can we gain in the future? Annals of Botany 100: 1085-1094.

Bauchet, G. y M. Causse. 2012. Genetic diversity in tomato and its wild relatives. In: M. Caliskan (ed.). Genetic Diversity in Plants. Intech, Rijeka, Coatia. pp: 133-162.

Bonilla-Barrientos, O., R. Lobato-Ortiz, J.J. García-Zavala, S. Cruz-Izquierdo, D. Reyes-López, E. Hernández-Leal y A. Hernández-Bautista. 2014. Diversidad agronómica y morfológica de tomates arriñonados y tipo pimiento de uso local en Puebla y Oaxaca, México. Fitotecnia Mexicana 37: 129-139.

Caffagni, A., N. Pecchioni, E. Francia, D. Pagani y J. Milc. 2014. Candidate gene expression profiling in two contrasting tomato cultivars under chilling stress. Biologia Plantarum 58(2): 283-295.

Carrillo-Rodríguez, J.C., N. Sosa-Hernández, A.M. Vera-Guzmán y J.L. Chávez-Servia. 2023. Diversidad biocultural de tomate nativo en Oaxaca, México. Herbario CICY 15: 18-23.

Chaudhary, S., P. Devi, A. Bhardwaj, U.C. Jha, K.D. Sharma, P.V.V. Prasad et al. 2020. Identification and characterization of contrasting genotypes/cultivars for developing heat tolerance in agricultural crops: current status and prospects. Frontiers in Plant Science 11: 587264.

Chaves-Barrantes, N.F. y M.V. Gutiérrez-Soto. 2017. Respuestas al estrés por calor en los cultivos, I. Aspectos moleculares, bioquímicos y fisiológicos. Agronomía Mesoamericana 28 (1): 237-256.

Chávez-Servia, J.L., J.C. Carrillo-Rodríguez, A.M. Vera-Guzmán, E. Rodríguez-Guzmán y R. Lobato-Ortiz. 2011. Utilización actual y potencial del jitomate silvestre mexicano. Ed. Unidad Oaxaca del Instituto Politécnico Nacional e Instituto Tecnológico del Valle de Oaxaca, México. 72 p.

Corrado, G., P. Piffanelli, M. Caramante, M. Coppola y R. Rao. 2013. SNP genotyping reveals genetic diversity between cultivated landraces and contemporary varieties of tomato. BMC Genomics 14: 835.

Corrado, G., M. Caramante, P. Piffanelli y R. Rao. 2014. Genetic diversity in Italian tomato landraces: Implications for the development of a core collection. Scientia Horticulturae 168: 138-144.

Cortés-Olmos, C., M. Leiva-Brondo, J. Rosello, M.D. Raigon y J. Cebolla-Cornejo. 2014. The role of traditional varieties of tomato as sources of functional compounds. Journal of Science of Food and Agriculture 94: 2888-2904.

Diez, M.J. y F. Nuez. 2008. Tomato, In: J. Prohens and F. Nuez (eds.). Hanbook of Plant Breeding, Vegetables II, Fabaceae, Liliaceae, Solanaceae and Umbelliferae, Vol. 2, Springer, New York. pp: 249-323.

Fahad, S., A.A. Bajwa, U. Nazir, S.A. Anjum, A. Farooq, A. Zohaib et al. 2017. Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science 8: 1147.

Farinon, B., M.E. Picarella, F. Siligato, R. Rea, P. Taviani y A. Mazzucato. 2022. Phenotypic and genotypic diversity of the tomato germplasm from the Lazio region in central Italy, with a focus on landrace distinctiveness. Frontiers in Plant Science 13: 931233.

Figueroa-Cares, I.E., O. Cruz-Alvarez, M.T. Martínez-Damián, J.E. Rodríguez-Pérez, M.T. Colinas-León y S. Valle-Guadarrama. 2018. Calidad nutricional y capacidad antioxidante en variedades y genotipos nativos de jitomate (Solanum lycopersicum L.). Revista de la Facultad de Agronomía (LUZ) 35: 63-84.

Ilahy, R., M.W. Siddiqui, I. Tlili, G. Piro, M.S. Lenucci y C. Hdider. 2016. Functional quality and colour attributes of two high-lycopene tomato breeding lines grown under greenhouse conditions. Turkish Journal of Agriculture–Food Science and Technology 4(5): 365-373.

Kozak, M., J. Bocianowski, A. Liersch, M. Tartanus, I. Bartkowiak-Broda, F.A. Piotto y R.A. Azevedo. 2011. Genetic divergence is not the same as phenotypic divergence. Mol. Breeding 28: 277-280.

Liu, D., L. Yang, JZ. Zhang, G.T. Zhu, HJ. Lu, YQ. Lu et al. 2020. Domestication and breeding changed tomato fruit transcriptome. Journal of Integrative Agriculture 19(1): 120-132.

Lobato-Ortiz, R., E. Rodríguez-Guzmán, J.C. Carrillo-Rodríguez, J.L. Chávez-Servia, P. Sánchez-Peña y A. Aguilar-Meléndez. 2012. Exploración, colecta y conservación de recursos genéticos de jitomate: Avances en la red de jitomate. Sistema Nacional de Recursos Fitogenéticos para la Alimentación y la Agricultura (SINAREFI). 54 p.

Magallanes-López, A.M., M.T. Martínez-Damián, J. Sahagún-Castellanos, L.J. Pérez-Flores, I.M. Marín-Montes y J.E. Rodríguez-Pérez. 2020. Calidad postcosecha de 40 poblaciones de tomate nativas de México. Agrociencia 54: 779-795.

Martínez-Vázquez, E., A. Hernández-Bautista, R. Lobato-Ortiz, J.J. García-Zavala y D. Reyes-López. 2017. Exploring the breeding potential of Mexican tomato landraces, Scientia Horticulturae 220: 317-325.

Mastretta-Yanes, A., M.R. Bellon, F. Acevedo, C. Burgeff, D. Piñero, y J. Sarukhán. 2019. Un programa para México de conservación y uso de la diversidad genética de las plantas domesticadas y sus parientes silvestres. Fitotecnia Mexicana 42(4): 321-334.

Peralta, I.E. y D.M. Spooner. 2007. History, origin and early cultivation of tomato (Solanaceae), In: K. Razdan and A.K. Mattoo (eds.). Genetic Improvement of Solanaceous Crop, Vol. 2: Tomato. Science Publishers. Enfield, New Hampshire, USA. pp: 1-24.

Pérez-Díaz, F., M.L. Arévalo-Galarza, L.J. Pérez-Flores, R. Lobato-Ortiz, y M.E. Ramírez-Guzmán. 2020. Crecimiento y características postcosecha de frutos de genotipos nativos de tomate. Fitotecnia Mexicana 43(1): 89-99.

Ramírez-Ojeda, G., I.E. Peralta, E. Rodríguez-Guzmán, J.L. Chávez-Servia, J. Sahagún-Castellanos, y J.E. Rodríguez-Pérez. 2021. Climatic diversity and ecological descriptors of wild tomato species (Solanum sect, Lycopersicon) and close related species (Solanum sect,

Juglandifolia y sect, Lycopersicoides) in Latin America. Plants 10: 855.

Ríos-Osorio, O., J.L. Chávez-Servia y J.C. Carrillo-Rodríguez. 2014. Producción tradicional y diversidad de tomate (Solanum lycopersicum L,) nativo: un estudio de caso en Tehuantepec-Juchitán, México. Agricultura, Sociedad y Desarrollo 11(1): 35-51.

Sacco, A., V. Ruggieri, M. Parisi, G. Festa, M. Rigano, M. Picarella, A. Mazzucato y A. Barone. 2015. Exploring a tomato landraces collection for fruit-related traits by the aid of a high-throughput genomic platform. PLOS One 10(9): e0137139.

Sánchez-Aspeytia, D., F. Borrego-Escalante, V.M. Zamora-Villa, J.D. Sánchez-Chaparro y F. Castillo-Reyes. 2015. Estimación de la interacción genotipo-ambiente en tomate con el modelo AMMI. Revista Mexicana de Ciencias Agrícolas 6(4): 763-778.

SAGARPA-SNICS (Secretaria de Agricultura Ganadería Desarrollo rural Pesca y Alimentación- Servicio Nacional de Inspección y Certificación de Semillas). 2021. Catálogo Nacional de Semillas Vegetales. México. 42 p.

SIAP (Servicio de Información Agroalimentaria y Pesquera). 2021. Estadísticas de Producción Agrícola. México. http://infosiap,siap,gob,mx: 8080/agricola.siap.gob.mx/ResumenProducto,do, 2021 (consulta de marzo 2021).

Yang, J., B. Liang, Y. Zhang, Y. Liu, S. Wang, Q. Yang et al. 2022. Genome-wide association study of eigenvectors provides genetic insights into selective breeding for tomato metabolites. BMC Biol. 20: 1-16.

Published

2023-08-31

How to Cite

Guerrero-Ortiz, C. A., Carrillo-Rodríguez, J. C., Chávez-Servia, J. L., Vera-Guzmán, A. M., Enríquez-del Valle, J. R., Aquino-Bolaños, E. N., Alba Jiménez, J. E., & Villegas-Aparicio, Y. (2023). Phenotypic divergences and variation between genetic collection of tomato, based on heterogeneity and environment. Bioagro, 35(3), 247-258. https://doi.org/10.51372/bioagro353.8