Effect of traditional irrigation on production, water efficiency and methane emission of rice crop

Authors

DOI:

https://doi.org/10.51372/bioagro361.2

Keywords:

Anaerobic condition, aquifer contamination, continuous flooding, percolation, water use efficiency

Abstract

The generation of information that serves as an argument in the search for alternatives for sustainable management of irrigation in rice is an inevitable current demand. Given this, this study aimed to evaluate traditional irrigation (continuous flooding) through crop production, water use efficiency and methane emission; taking as reference an irrigation alternative without flooding (aerobic), in which soil moisture was maintained between saturation and around field capacity. With these two irrigation alternatives, an experiment of four square plots of 25,0 m on each side was installed, defining nine sampling points of 4,0 m2 within each of them. The INIAP 11 rice variety for local use was used, with sowing by transplant. Irrigation management was carried out under the evaporation tub method, together with the registration of tensiometers in humidity control. In the crop, tillering, empty grains (%), weight of 1000 grains (g) and yield (kg·ha-1) were evaluated. For the measurement of methane, two acrylic chambers of 1,0 m x 1,0 m x 1,2 m were used, together with a portable gas and temperature meter. No significant differences were detected in crop production, a substantial increase in water use efficiency from 3,649 m3·kg-1 to 0,312 m3·kg-1. The methane emission rate was significantly (P≤0,05) higher in traditional irrigation, with an average of 2,92 mg·m-2·h-1; while, in aerobic irrigation, this value was 1,07 mg·m-2·h-1. It was concluded that the proposed irrigation alternative has advantages in all the parameters evaluated with respect to traditional irrigation.

Downloads

Download data is not yet available.

References

Alcívar, C., y S. Mestanza. (2007). Nutrición mineral del cultivo de arroz. In: Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP) (Ed.). Manual del cultivo de arroz. INIAP, Quito. pp. 40-58. https://n9.cl/n5gf9

Allen, R., L. Pereira, D. Raes, y M. Smith. 2006. Evapotranspiración del cultivo: Guías para la determinación de los requerimientos de agua de los cultivos. FAO, Roma.

Alvarado, C., y M. Barahona. 2017. Comparación de tres métodos de infiltración para calcular el balance hídrico del suelo, en la Cuenca del río Suquiapa, El Salvador. Cuadernos de Investigación UNED 9(1): 23-33.

Aulakh, M.S., R. Wassmann, y H. Rennenberg. 2002. Methane transport capacity of twenty-two rice cultivars from five major Asian rice growing countries. Agriculture, Ecosystems & Environment 91: 59-77.

Balzarini, M., J.Di Rienzo, L. González, y C. Bruno. 2011. Introducción a la bioestadística: aplicaciones con Infostat en agronomía. Universidad Nacional de Córdoba, Córdoba. https://n9.cl/jznxv

Bilgili, A.V., I. Yesilnacar, K. Akihiko, T. Nagano, A. Aydemir, H. Sefa, y A. Bilgili. 2018. Post-irrigation degradation of land and environmental resources in the Harran plain, southeastern Turkey. Environmental monitoring and assessment 190(11): 660.

Bossio, D., W. Horwath, R. Mutters, y C. Kessel. 1999. Methane pool and flux dynamics in a rice field following straw incorporation. Soil Biology and Biochemistry 31(9): 1313-1322.

Capurro, M., S. Tarlera, P. Irisarri, G. Cantou, S. Riccetto, A. Fernández, y A. Roel. 2015. Cuantificación de emisiones de metano y óxido nitroso bajo dos manejos del riego contrastantes en el cultivo de arroz. Instituto Nacional de Investigación Agropecuaria (INIA), Montevideo. https://n9.cl/v56af

Carracelas, G., J. Hornbuckle, M. Verger, R. Huertas, S. Riccetto, F. Campos, y A. Roel. 2019. Irrigation management and variety effects on rice grain arsenic levels in Uruguay. Journal of Agriculture and Food Research 1:100008.

Covay, K., A. Sturrock, y D.C. Sasser. 1992. Water requirements for growing rice in southwestern Louisiana, 1985-86. Louisiana Department of Transportation and Development, Louisiana. https://n9.cl/jfqo19

Cowan, N., A. Bhatia, J. Drewer, N. Jain, R. Singh, R. Tomer et al. 2021. Experimental comparison of continuous and intermittent flooding of rice in relation to methane, nitrous oxide and ammonia emissions and the implications for nitrogen use efficiency and yield. Agriculture, Ecosystems & Environment 319(1): 1-11.

Cui, Z., G.L. Wu, Z. Huang, y Y. Liu. 2019. Fine roots determine soil infiltration potential than soil water content in semi-arid grassland soils. Journal of hydrology 578(1): 1-8.

Das, H., A. Mitra, P. Sengupta, A. Hossain, F. Islam, y G. Robbani. 2004. Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environment International 30(3): 383-387.

Díaz, J. 2017. Riego por gravedad (Edición digital). Universidad del Valle, Cali. https://n9.cl/gb20f

Djaman, K., V. Mel, L. Diop, A. Sow, R. El-Namaky, B. Manneh, et al. 2018. Effects of alternate wetting and drying irrigation regime and nitrogen fertilizer on yield and nitrogen use efficiency of irrigated rice in the Sahel. Water 10(6): 1-20.

Dunn, B.W., y D.S. Gaydon. 2011. Rice growth yield and water productivity responses to irrigation scheduling prior to the delayed application of continuous flooding in South-East Australia. Agricultural Water Management 98(12): 1799-1807.

Ferreyra, R., G. Sellés, R. Ahumada, P. Maldonado, P. Gil, y C. Barrera. 2005. Manejo del riego localizado y fertirrigación. Instituto de Investigaciones Agropecuarias, La Cruz. https://n9.cl/cyd87

González, M., y A. Alonso. 2016. Tecnologías para ahorrar agua en el cultivo de arroz. Nova 14(26): 111-126.

Hernández-Medrano, J., y L. Corona. 2018. El metano y la ganadería bovina en México: ¿parte de la solución y no del problema? Agroproductividad 11(2): 46-51.

Herrera, J., V. Beita, D. Solórzano, H. Argüello, y A. Rodríguez. 2014. Determinación de emisiones de metano y óxido nitroso generadas en plantaciones de arroz en Guanacaste, Costa Rica. Ciencias Ambientales 46(2): 5-14.

Hube, S., M. Alfaro, L. Ramírez, G. Donoso, y M. Paredes. 2015. Contribución del cultivo de arroz al cambio climático. Instituto de Investigaciones Agropecuarias (INIA), Chile. https://n9.cl/v9egr

INEC (Instituto Nacional de Estadísticas y Censos). 2021a. Encuesta de superficie y producción agropecuaria continua. INEC, Quito. https://n9.cl/ynlxb

INEC (Instituto Nacional de Estadísticas y Censos). 2021b. Módulo de información agroambiental y tecnificación. INEC, Quito. https://n9.cl/8dy3c

Ishfaq, M., M. Farooq, U. Zulfiqar, S. Hussain, N. Akbar, A. Nawaz, y S. Ahmad. 2020. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agricultural Water Management 241(1): 106363.

Islam, S.M., Y.K. Gaihre, M.R. Islam, M. Akter, A.A. Mahmud, U. Singh, y B.O. Sander. 2020. Effects of water management on greenhouse gas emissions from farmers´ rice fields in Bangladesh. Science of the Total Environment 734(1): 1-8.

Lagomarsino, A., A. Agnelli, B. Linquist, M. Adviento-Borbe, G. Gavina, S. Ravaglia, y R. Ferrara. 2016. Alternate wetting and drying of rice reduced CH4 emissions but triggered N2O peaks in a clayey soil of central Italy. Pedosphere 26(4): 533-548.

Li, Z., Z. Li, P. Letuma, H. Zhao, Z. Zhang, W. Lin et al. 2018. A positive response of rice rhizosphere to alternate moderate wetting and drying irrigation at grain filling stage. Agricultural Water Management 203(1): 26-36.

Medina, J. A. 2000. Riego por goteo: teoría y práctica (4ta. Ed.). Ediciones Mundi-Prensa, Madrid.

Mousavi, S.F., S. Yousefi, B. Mostafazadeh, A. Hemmat, y M.R. Yazdani 2009. Effect of puddling intensity on physical properties of a silty clay soil under laboratory and field conditions. Paddy Water Environment 7: 45-54.

Naser, H.M., O. Nagata, S. Tamura, y R. Hatano. 2010. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Science and Plant Nutrition 53(1): 95-101.

Ochoa, E., E. Álava, y E. Chica. 2017. Comparación de un sistema de intensificación del cultivo de arroz (SICA) con sistemas tradicionales de siembra en la zona de Churute, Ecuador. Ciencia y tecnología 10(1): 1-6.

FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura). 2021. El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura. FAO, Roma. https://n9.cl/akurn

Parent, B., B. Suard, R. Serraj, y F. Tardieu. 2010. Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized. Plant, Cell and Environment 33: 1256-1267.

Pascual, B., y N. Pascual. 2020. Riegos de gravedad y a presión (4ta. Ed.). Universidad Politécnica de Valencia, Valencia. https://n9.cl/vuy2k

Riccetto, S., M. Capurro, y A. Roel. 2017. Estrategias para minimizar el consumo de agua del cultivo de arroz en Uruguay manteniendo su productividad. Agrociencia Uruguay 21(1): 109-119.

Samoy-Pascual, K., S. Yadav, G. Evangelista, M.A. Burac, M. Rafael, R. Cabangon et al. 2021. Determinants in the adoption of alternate wetting and drying technique for rice production in a gravity surface irrigation system in the Philippines. Water 2022 14(1): 1-15.

Sánchez, M., Y. Muñoz, J. Dell’Amico, y R. Polón. 2016. Manejo del agua de riego en el cultivo de arroz (Oryza sativa L.) por trasplante, su efecto en el rendimiento agrícola e industrial. Cultivos Tropicales 37(3): 178-186.

Saxton, K., y W. Rawls. 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 70: 1569-1578.

Scavino, F., C. Ghiazza, M. Bellini, y D. Oreggioni. 2021. Caracterización de variables biológicas que controlan la producción de metano en planta, en el cultivo de arroz. Agencia Nacional de Investigación e Innovación, Uruguay. https://n9.cl/lm2g7y

Scivittaro, W., R. De Sousa, R. Da Silva, S. Cuadra, y A. Heinemann. 2021. Emisiones de gases de efecto invernadero en producción de arroz de riego. In: M. Paredes, V. Becerra, y G. Donoso. 100 años del cultivo del arroz en Chile: En un contexto internacional: 1920-2020. Instituto de Investigaciones Agropecuarias, Chillán. pp. 652-673.

Seiler, W., A. Holzapfel-Pschron, R. Conrad, y D. Scharffe. 1984. Methane emission from rice paddies. Journal of atmospheric chemistry 1: 241-268.

Sriphirom, P., A. Chidthaisong, y S. Towprayoon. 2019. Effect of alternate wetting and drying water management on rice cultivation with low emissions and low water used during wet and dry season. Journal of Cleaner Production 223: 980-988.

Tarjuelo, J.M. 2005. El riego por aspersión y su tecnología. Ediciones Mundi-Prensa, Madrid.

Torres, J., R. Cruz, y F. Villegas. 2004. Avances técnicos para la programación y manejo del riego en caña de azúcar (2da. Ed.). Centro de Investigación de la Caña de Azúcar (CENICAÑA), Cali. https://n9.cl/ c1v2i

Valdiviezo, E. 2007. Manejo y necesidades de agua en el cultivo de arroz. In: Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP) (Ed.), Manual del cultivo de arroz. INIAP, Quito. pp. 33-38. https://n9.cl/n5gf9

Published

2024-01-04

How to Cite

Gavilánez Luna, F. C., Barzola Ordinola, C. M., Falconí Zambrano, C. J., & Loqui Sánchez, A. J. (2024). Effect of traditional irrigation on production, water efficiency and methane emission of rice crop. Bioagro, 36(1), 15-26. https://doi.org/10.51372/bioagro361.2

Issue

Section

Artículos