Effect of rhizospheric bacteria from Prosopis limensis Benth. on the development of Solanum lycopersicum L. under salt stress
DOI:
https://doi.org/10.51372/bioagro361.5Keywords:
ACC desaminase, Bacillus, growth promotion, salinity, tomatoAbstract
The growth and development of the Solanum lycopersicum “tomato” crops is affected by salinity. The objective of the research was to determine the effect of rhizospheric bacteria of Prosopis limensis Benth. "carob" on the development of tomato under salinity. The approach was quantitative and the experimental design completely randomized with four treatments: control (non-inoculated, T1), chemical control with 180 kg·ha-1 N, 100 kg·ha-1 P, 120 kg·ha-1 K (T2), and two treatments of bacteria with 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme activity (T3, T4) at 108 cel·mL-1. These were isolated from the rhizospheric soil of 37 carob trees and those with ACCD activity were selected. The two bacteria with the greatest increase on seed germination of an indicator plant (radish) irrigated with saline water (80mM NaCl) were inoculated on tomato cv. Rio Grande seeds and roots before transplanting in a substrate with electrical conductivity of 10.28 dS·m-1. In the rhizosphere of carob trees, 388 Gram-positive (72.16 %) and Gram-negative (27.84 %) bacteria were isolated. The 4.12 % showed ACCD activity and achieved from 89.72 to 100 % germination of radish seeds compared to 32.75 % in the non-inoculated seeds, in saline conditions. Bacillus spp. promoting germination rates of 34.66 and 33.0 day-1 versus 32.11 day-1 in the non-inoculated seeds in non-saline conditions, and 12.29 day-1 in the non-inoculated seeds in saline conditions were identified and selected. These bacteria increased the height, chlorophyll content, potassium/sodium ratio, number and fruit weight of tomato plants compared to the control. It was concluded that Bacillus spp. can constitute biofertilizers to favor tomato cultivation under salinity.
Downloads
References
Ahmed N., N. Mahmud, M. Zaman, Z. Ferdous, y S. Halder. 2017. Effect of different salinity level on tomato (Lycopersicon esculentum) production under climate change condition in Bangladesh. Annual Research & Review in Biology 13(3): 1-9.
Albdaiwi R., H. Khyami-Horani, J. Ayad, K. Alananbeh, y R. Al-Sayaydeh. 2020. Isolation and characterization of halotolerant plant growth promoting rhizobacteria from durum wheat (Triticum turgidum subsp. durum) cultivated in saline areas of the dead sea region. Oxidative Medicine and Cellular Longevity 10: 1639.
Ali B., X. Wang, M. Saleem, M. Azeem, M. Afridi, M. Nadeem et al. 2022. Bacillus mycoides PM35 reinforces photosynthetic efficiency, antioxidant defense, expression of stress-responsive genes, and ameliorates the effects of salinity stress in maize. Life 12(2): 219.
Aslam H., S. Ahmad, T. Anjum, y W. Akram. 2018. Native halotolerant plant growth promoting bacterial strains can ameliorate salinity stress on tomato plants under field conditions. International Journal of Agriculture & Biology 20(2): 315-322.
Azadikhah M., F. Jamali, H. Nooryazdan, y F. Bayat, F. 2019. Growth promotion and yield enhancement of barley cultivars using ACC deaminase producing Pseudomonas fluorescens strains under salt stress. Spanish Journal of Agricultural Research 17(1): e0801.
Balderas K., C. Gómez, M. Trujillo, N. Valdez, S. Aranda, A. Juárez et al. 2021. Bacillus velezensis 83 increases productivity and quality of tomato (Solanum lycopersicum L.): Pre and postharvest assessment. Current Research in Microbial Sciences 2: 100076.
Barcos M., M. Maldonado, J. Vera, y J. Peña. (2019). Characterization of rhizospheric bacteria of the surrounding soil of a lead [Pb] recycling plant. Revista Internacional de Contaminación Ambiental 35(2): 349-359.
Chakma P., M. Hossain, y M. Rabbani. 2019. Effects of salinity stress on seed germination and seedling growth of tomato. Journal of the Bangladesh Agricultural University 17(4): 490-499.
Egamberdieva D., K. Davranov, S. Wirth, A. Hashem, y E. Abd-Allah. 2017. Impact of soil salinity on the plant-growth promoting and biological control abilities of root associated bacteria. Saudi Journal of Biological Sciences 24(7): 1601-1608.
Gong Y., J.L. Chen, S.Y. Pan, X.W. Li, M.J. Xu, C.M. Zhang et al. 2020. Antifungal potential evaluation and alleviation of salt stress in tomato seedlings by a halotolerant plant growth-promoting actinomycete Streptomyces sp. KLBMP5084. Rhizosphere 16: 100262.
Gupta A., A. Bano, S. Rai, R. Mishra, M. Singh, S. Sharma, y N. Pathak. 2022. Mechanistic insights of plant-microbe interaction towards drought and salinity stress in plants for enhancing the agriculture productivity. Plant Stress 4: 100073.
Hernández R., C. Fernández, y L. Baptista 2014. Metodología de la Investigación. Hill Interamericana Editores. México.
Jiang C., M. Johkan, M. Hohjo, S. Tsukagoshi, y T. Maruo. 2017. A correlation analysis on chlorophyll content and SPAD value in tomato leaves. Horticulture Research 71: 37-42.
Khan M., A. Sesstsch, M. Harris, K. Fatima, A. Imran, M. Arshan, et al. 2015. Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Frontiers in Plant Science 5: 755.
Kim M., R. Radhakrishnan, S. Kang, Y. You, E. Jeong, J. Kim, y I. Lee 2017. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity. Physiology and Molecular Biology of Plants 23(3): 571-580.
Kour D., y A. Yadav. 2022. Bacterial mitigation of drought stress in plants: Current perspectives and future challenges. Current Microbiology 79(9): 248.
Kumawat K., S. Nagpal, y P. Sharma. 2022. Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: A review. Pedosphere 32(2): 223-245.
Lazo, J. 2018. La edad de los árboles de Prosopis limensis en el Santuario Histórico Bosque de Pomac-Lambayeque. Tesis. Universidad Nacional Agraria La Molina, Lima. 130 p.
Leoncio, M., y G. Botelho. (2017). Isolation and characterization of plant growth promoting bacteria isolated from garlic (Allium sativum). Scientia Agraria 18(3): 95-106.
Li H., H. Yue, L. Li, Y. Liu, H. Zhang, J. Wang, y X. Jiang. 2021. Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express 11(74): 1-15.
Li Y., W. Niu, X. Cao, J. Wang, M. Zhang, X. Duan, y Z. Zhang. 2019. Effect of soil aeration on root morphology and photosynthetic characteristics of potted tomato plants (Solanum lycopersicum) at different NaCl salinity levels. BMC Plant Biology 19(1): 331.
Liu L., W. Xia, H. Li, H. Zeng, B. Wei, S. Han, y C. Yin. 2018. Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content. Frontiers in Plant Science 9: 275.
Llahy R., Z. Pék, A. Montefusco, H., Daood, M. Azam, M. Siddiqui et al. 2022. Effect of individual and select combined treatments with saline solutions and spent engine oil on the processing attributes and functional quality of tomato (Solanum lycopersicum L.) fruit: In memory of Professor Leila Ben Jaballah Radhouane (1958 - 2021). Frontiers in Nutrition 9: 844162.
Mehmood U., M. Inam, M. Saeed, A. Altaf, F. Azam, y S. Hayat. 2018. Plant protection a brief review on plant growth promoting rhizobacteria (PGPR): A key role in plant growth promotion. Plant Protection 2(2): 77-82.
Misra S., y P. Chauhan. 2020. ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech 10(3): 119.
Moles T., R. de Brito Francisco, L. Mariotti, A. Pompeiano, A. Lupini, L. Incrocci et al. 2019. Salinity in autumn-winter season and fruit quality of tomato Landraces. Frontiers in Plant Science 10: 1078.
Orozco M., B. Glick, y G. Santoyo. 2020. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research 235: 126439.
Pan J., F. Peng, X. Xue, Q. You, W. Zhang, T. Wang, y C. Huang. 2019. The growth promotion of two salt-tolerant plant groups with PGPR inoculation: a meta-analysis. Sustainability 11(2): 378.
Pandey S., y S. Gupta. 2020. Evaluation of Pseudomonas sp. for its multifarious plant growth promoting potential and its ability to alleviate biotic and abiotic stress in tomato (Solanum lycopersicum) plants. Scientific Reports 10: 20951.
Piccoli P., C. Travaglia, A. Cohen, L. Sosa, P. Cornejo, R. Masuelli, y R. Bottini 2010. An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A1 and A3 and jasmonic acid in chemically-defined culture medium. Plant Growth Regul 64: 207-210.
Pire, R., y G. Vargas-Simón. 2019. Recurrent inconsistencies in publications that involve Maguire’s germination rate formula. Forest systems 28(1): eSCO2.
Ramírez V., A. Báez, P. López, R. Bustillos, M. Villalobos, R. Carreño et al. 2019. Chromium hyper-tolerant Bacillus sp. MH778713 assists phytoremediation of heavy metals by mesquite trees (Prosopis laevigata) Frontiers in Microbiology 10.
Rodríguez A., A. Velasco, O. Castellanos, G. Acevedo, y R. Clarenc. 2020. Bacterias rizosféricas con beneficios potenciales en la agricultura. Revista Terra Latinoamericana 38(2): 333-345.
Saglam, A., M. Demiralay, D. Nigar-Colak, N. Pehlivan-Gedik, O. Basok, y A. Kadioglu. 2022. Pseudomonas putida KT2440 Induces drought tolerance during fruit ripening in tomato. Bioagro 34(2): 139-150.
Sánchez-Puriaman, M., J. Hernández-Hernández, J. Caro-Castro, y C. Carreño-Farfán. 2023. Rhizospheric actinobacteria of Opuntiasp. “prickly pear” with deaminase activity as growth promoting in Solanum lycopersicum L. under salinity stress. Scientia Agropecuaria 14(1): 21-30.
Sanjuan F., P. Ramírez, P. Sánchez, M. Sandoval, M. Livera, J., y C. Perales, C. 2015. Tolerancia de líneas nativas de tomate (Solanum lycopersicum) a la salinidad con NaCl. Interciencia 40(10): 704-709.
Sathya A., R. Vijayabharathi, y S. Gopalakrishnan. 2017. Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech 7(2): 102.
Szymanska S., T. Płociniczak, Z. Piotrowska y K. Hrynkiewicz. 2016. Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L. Community structure and metabolic potential. Microbiological Research 192: 37-51.
Tchuisseu V., B. Berger, S. Patz, M. Becker, V. Turečková, O. Novák et al. 2020. The response of maize to inoculation with Arthrobacter sp. and Bacillus sp. in phosphorus-deficient, salinity-affected soil. Microorganisms, 8(7): 1005.
Welle P., y M. Mauter. 2017. High-resolution model for estimating the economic and policy implications of agricultural soil salinization in California. Environmental Research Letters 12(9): 094010.
Wi K., T. Fukuyo, O. Keiki, y Y. Ohwaki. 2018. The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiology and Biochemistry 127: 599-607.
Yadav V., R. Yadav, P. Choudhary, S. Sharma, y N. Bhagat. 2022. Mitigation of drought stress in wheat (Triticum aestivum L.) by inoculation of drought tolerant Bacillus paramycoides DT-85 and Bacillus paranthracis DT-97. Journal of Applied Biology & Biotechnology 10: 59-69.
Yaghoubian I., L. Msimbira, y D. Smith. 2022. Cell-Free supernatant of Bacillus strains (CFS) can improve seed vigor index of corn (Zea mays L.) under salinity stress. Frontiers in Sustainable Food Systems 6: 857643.
Yue H., L. Zhao, D. Yang., M. Zhang, J. Wu., Z. Zhao et al. 2022. Comparative analysis of the endophytic bacterial diversity of Populus euphratica oliv. in environments of different salinity intensities. Microbiology Spectrum, 10(3): e00500-22.
Zafar-ul-Hye, M., S. Danish, M. Abbas, M. Ahmad, y T. Munir. 2019. ACC deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy 9(7): 343-358.
Published
How to Cite
Issue
Section
Copyright (c) 2023 Carmen Calderón-Arias, Kiara Calle-Carmen, Carmen Carreño-Farfán, César Estela-Campos, Félix M. Carbajal-Gamarra, Ada P. Barturén-Quispe, Haydeé Y. Chirinos-Cuadros, Marilín N. Sánchez-Purihuamán
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Rights of the author/s are from the year of publication
This work is under the license:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors not necesarily reflect the position of the publisher or UCLA. The total or partial reproduction of the texts published in this journal is authorized, as long as the complete source and the electronic address of this journal is cited. Authors have the right to use their articles for any purpose as long as it is done for non-profit purposes. Authors can publish the final version of their work on internet or any other medium, after it has been published in this journal.
Bioagro reserves the right to make textual modifications and technical adjustments to the figures of the manuscripts, in accordance with the style and specifications of the journal.