Comparison of two stability analysis models for sorghum grain yield in northern Tamaulipas, Mexico

Authors

DOI:

https://doi.org/10.51372/bioagro372.4

Keywords:

Eberhart and Russell, Genotype-environment interaction, GGE biplot, Sorghum bicolor

Abstract

Grain sorghum is planted annually in Mexico on 1 427 202 ha; 55,12 % of this area corresponds to the State of Tamaulipas, mainly under rainfall conditions, with yields of 2 284 kg ha-1. The objective of this research was to identify sorghum genotypes that present high grain yield and stability, comparing the stability parameters of Eberhart and Russell and the GGE biplot model, to define the model that best describes the G x A interaction. This research was carried out with five sorghum genotypes in 14 test environments: seven irrigated and seven only with pre-sowing irrigation in Rio Bravo, Tamaulipas, during 2023. Grain yield kg·ha-1 was analyzed using the Eberhart and Russell stability parameters and the GGE biplot model. The results show that when the Eberhart and Russell model was used, the P83G19 hybrid was identified as a consistent, stable genotype, with a grain yield 1.23 % higher than the general average, and the ADV-G3247 hybrid and the RB-Williams variety were identified as consistent genotypes, which respond better in good environments, with grain yields 7.31 and 0.4 % higher than the general average, respectively. When the GGE biplot model was used, the P83G19 hybrid exhibited stability and good grain yield. The two stability analysis models consistently identified stable and high-yielding genotypes, determining the accuracy of both methods and their usefulness in understanding the Genotype x Environment (G x E) interaction to identify genotypes with broad or specific adaptation.

Downloads

Download data is not yet available.

References

Adham, A., M.B.A. Ghaffar, A.M. Ikmal y N.A.A. Shamsudin. 2022. Genotype × environment interaction and stability analysis of commercial hybrid grain corn genotypes in different environments. Life 12(11): 1773.

Ajmera, S., S.S. Kumar y V. Ravindrababu. 2017. Genotype x environment interactions and stability analysis for grain iron and zinc concentrations in rice Oryza sativa L., genotypes. Int J Curr Microbiol Appl Sci 6: 1902-1913

Angela, P. y M. Vargas. 2015. GEA-R (genotype x environment analysis with R for windows) version 2.0. International Maize and Wheat Improvement Center 36. https://gea-r.software.informer.com/

Aranda-Lara, U., L. Ledesma-Ramírez, R. Hernández-Martínez, S. Ruiz-Ramírez, O. Gayosso-Barragán, J. Cid-Río y H. Flores-Gallardo. 2024. Genotype by Environment Interaction of Maize (Zea mays L.) Hybrid Yield in Guanajuato, Mexico. Agro Productividad 17(9): 15-26.

Bilate, D.B., Y.D. Belew, B.T. Mulualem y A.W. Gebreselassie. 2023. AMMI and GGE Biplot analyses for mega environment identification and selection of some high-yielding cassava genotypes for multiple environments. International Journal of Agronomy 1: 1-13.

Blanche, S.B. y G.O. Myers. 2006. Identifying discriminating locations for cultivar selection in Louisiana. Crop Science 46: 946-949.

Carballo, C. y S. Márquez. 1970. Comparación de variedades de maíz del Bajío y de la Mesa Central por su rendimiento y estabilidad. Agrociencia 1(5): 129-146.

Cooper, M. e I.H. DeLacy. 1994. Relationships among analytical methods used to study genotypic variation and genotype by environment interaction in plant breeding multi environment experiments. Theorical and Applied Genetics 88: 561-572.

Crossa, J., J. Burgueño, P.L. Cornelius, G. McLaren, R. Trethowan y A. Krishnamachari. 2006. Modeling genotype x environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop Science 46: 1722-1733.

Crossa, J., P.L. Cornelius y W. Yan. 2002. Biplot of linear-bilinear models for studying crossover genotype x environment interaction. Crop Science 42: 619-633.

Dias, C., C. Santos y J.T. Mexia. 2023. Genotype x Environment interaction: A comparison between joint regression analysis and weighted Biplot models. WSEAS Transactions on Environment and Development.

Eberhart, S.A. y W.A. Russell. 1966. Stability parameters for comparing varieties. Crop Science 6: 36-40.

Faria, S.V., L.S. Luz, M.C. Rodrigues, C.J.E. de Souza, P.C.S. Carneiro y LR. Oliveira. 2017. Adaptability and stability in comercial maize hybrids in the southeast of the State of Minas Gerais, Brasil. Agronomic Science Magazine 48(2): 347-357.

Herrera-Portilla, D.M, O.E. Checa-Coral y D.M. Rodríguez-Rodríguez. 2023. Adaptabilidad y estabilidad fenotípica para el rendimiento en vaina verde de 20 líneas de arveja voluble (Pisum sativum L.) con gen afila. Revista Biotecnología en el Sector Agropecuario y Agroindustrial 21: 73-84.

Inabangan-Asilo, M.A., B.P.M. Swamy, A.F. Amparado, G.I. Descalsota-Empleo, E.C. Arocena y R. Reinke. 2019. Stability and G x E analysis of zinc-biofortified rice genotypes evaluated in diverse environments. Euphytica 215: 61.

INIFAP. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. 2017. Agenda Técnica Agrícola Tamaulipas. 409 p.

Kumar, V., A.S. Kharub, R.P.S. Verma y A. Verma. 2016. Applicability of joint regression and biplot models for stability analysis in multi environment barley Hordeum vulgare trials. Indian Journal of Agricultural Sciences 86(11): 1443-8.

Nur, A., K. Syahruddin, M. Azrai y M. Farid. 2018. Genetic by environment interactions and stability of tropical wheat lines in Indonesian medium-plains. IOP Conference Series Earth Environmental Science 157: 012049.

Patel, J.M., M.S. Patel, H.N. Patel, N.V. Soni y N.N. Prajapati. 2019. Stability analysis in pearl millet (Pennisetum glaucum (L.) R. Br.). International Journal of Chemical Studies 7(4): 2371-2375.

Rad, M.N., M.A. Kadir, M.Y. Rafii, H.Z. Jaafar, M.R. Naghav y F. Ahmadi. 2013. Genotype environment interaction by AMMI and GGE biplot analysis in three consecutive generations of wheat (Triticum aestivum) under normal and drought stress conditions. Australian Journal of Crop Science 7 (7): 956-961.

Rana, C., A. Sharma, K.C. Sharma, P. Mittal, B.N. Sinha, V.K. Sharma et al. 2021. Stability analysis of garden pea (Pisum sativum L.) genotypes under North Western Himalayas using joint regression analysis and GGE biplots. Genetic Resources and Crop Evolution 68: 999-1010.

Ruswandi, D., M. Syafii, H. Maulana, M. Ariyanti, N.P. Indriani y Y. Yuwariah. 2021. GGE biplot analysis for stability and adaptability of maize hybrids in western region of Indonesia. International Journal of Agronomy 5: 1-9.

Ruswandi, D., M. Syafii, N. Wicaksana, H. Maulana, M. Ariyanti, N.P. Indriani et al. 2022. Evaluation of high yielding maize hybrids based on combined stability analysis, sustainability index, and GGE biplot. BioMed Research International 1: 1-12.

Salinas-García, J.R., M. Alvarado-Carrillo y R. Sánchez-de la Cruz. 2006. Suelo y Agua. En: LA. Rodríguez-del Bosque (ed.). Campo Experimental Río Bravo: 50 años de investigación agropecuaria en el norte de Tamaulipas Historia, logros y retos. Libro técnico No. 1. INIFAP, Campo Experimental Río Bravo. Río Bravo, Tamaulipas, México. pp. 147-162.

SAS Institute. 2016. SAS/STAT® 9.1 User'S Guide. Cary, NC: SAS lnstitute lnc. USA. 5121 p.

SIAP. Servicio de información agroalimentaria y pesquera. 2024. Anuario Estadístico de la Producción Agrícola. Secretaría de Agricultura y Desarrollo Rural.

Sodhaparmar, M.K., M.S. Patel, R.A. Gami, S.D. Solanki, N.N. Prajapati y R.L. Visakh. 2023. Stability analysis in pearl millet Pennisetum glaucum (L.) R. Br. Fronties in Crop Improvement 11 (1): 21-26.

Solomon, H. y A.G. Yohans. 2021. GGE biplot analysis of yield performance and stability of pearl millet genotypes (Pennisetum glaucum (L.) R. Br.) across different environments in Ethiopia. Advances in Crop Science and Technology 9: 8.

Steel, R.G.D. y J.H. Torrie. 1980. Principles and procedures of statistics. A biometrical approach. 3rd ed. McGraw-Hill. New York, N.Y.

Vásquez, A.V., H.H.A. Cabrera, D.L. Jiménez y A. Colunche. 2019. Estabilidad del rendimiento de genotipos de papa (Solanum tuberosum L.). Ecología Aplicada 18(1).

Vásquez, A.V., H.A. Medina, H.H.A. Cabrera y D.L. Jiménez. 2021. Estabilidad del rendimiento en maíz morado de Perú utilizando los modelos de Eberhart-Russell y Lin-Binns. Agronomía Tropical 71: 1-10.

Williams, A.H., U. Aranda, G. Arcos, F. Zavala, M. Rodríguez y E. Olivares. 2021. Potencial productivo de variedades experimentales de sorgo blanco para el sur de Tamaulipas. Nova Scientia 13 (2): 1-19.

Yan, W. 2002. Singular-value partitioning in biplot analysis of multienvironment trial data. Agronomy Journal 94: 990-996.

Yan, W. e I. Rajcan. 2002. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science 42(1):11-20.

Yan, W. y N.A. Tinker. 2006. Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Sciences 86: 623-645.

Yang, W. y M.S. Kang. 2003. GEE biplot analysis: a graphical tool for breeders, geneticists and agronomists. CRC press: Boca Raton, FL. 271 p.

Yihunie, T.A. y C.A. Gesesse. 2018. GGE biplot analysis of genotype by environment interaction in field pea (Pisum sativum L.) genotypes in Northwestern Ethiopia. Journal of Crop Science and Biotechnology 21: 67-74.

Published

2025-05-01

How to Cite

Elizondo-Barrón, J., Aranda-Lara, U., & Williams-Alanís, H. (2025). Comparison of two stability analysis models for sorghum grain yield in northern Tamaulipas, Mexico. Bioagro, 37(2), 179-188. https://doi.org/10.51372/bioagro372.4

Issue

Section

Artículos