Azospirillum brasilense, pangenome analysis
DOI:
https://doi.org/10.51372/bioagro373.12Keywords:
Bioinformatic analysis, genomic fingerprinting, core genome, genome analysisAbstract
The bacterium Azospirillum brasilense has been studied for being associated with the stimulation of plant growth by production of auxins, especially indole acetic acid, in addition to the biological fixation of nitrogen. Genome analysis is used to generate a genome fingerprint matrix and with them build a tree to distinguish the differences between species of this genus. To carry out this analysis, it was carried out with the virtual genomic fingerprinting method using the VAMPhyRE program. Probes were designed to detect 19 nucleotides and with the results obtained, a genomic fingerprint matrix was generated from which a genomic tree of minimal evolution was built, which revealed the phylogenomic relationships between the species of the genus, highlighting that the Brazilian species A is separated in a clade perfectly differentiated from the other species of the group. Likewise, the analysis allowed us to detect that the A brasilense genome is composed of 19,284 genes, which is equivalent to 16 % of the genes annotated and make up the core genome of the strains analyzed. Likewise, 27 % are moderately conserved genes. This is evidence of the great genomic variability that the species presents. In addition, a graph of the genome of the species was generated. Also, using the PROKKA program and the virtual genomic fingerprinting method, a matrix of distances and a phylogenomic tree of minimal evolution were generated, without roots, in radial shape showing that all A. brasilense strains are housed in the same clade and separated from the other species of this genus.
Downloads
References
Allardet-Servent, A., S. Michaux-Charachon, E. Jumas-Bilak, L. Karayan y M. Ramuz. 1993. Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. Journal of Bacteriology 175(24): 7869-7874.
Aziz, R.K., D. Bartels, A.A. Best, A. DJongh, M. Disz, T Edwards, K Formsma et al. 2008. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 9(1): 75.
Boyer, M., J. Haurat, S. Samain, B. Segurens, F. Gavory, V. González et al. 2008. Bacteriophage prevalence in the genus Azospirillum and analysis of the first genome sequence of an Azospirillum brasilense integrative phage. Appl. Environ. Microbiol. 74(3): 861-74.
Caballero-Mellado, J., L. López-Reyes y R. Bustillos-Cristales. 1999. Presence of 16S rRNA genes in multiple replicons in Azospirillum brasilense. FEMS Microbiology Letters 178(2): 283-288.
Domingues-Duarte, C.F., U. Cecato, T. Tretto-Biserra, D. Mamédio y S. Galbeiro. 2020. Azospirillum spp. en gramíneas y forrajeras. Revisión. Revista Mexicana de Ciencias Pecuarias 11: 223-240.
Fukami, J., P. Cerezini y M. Hungria, 2018. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Expr 8: 73.
Hernández-Mendoza, J.L., J.D.C. Quiroz-Velásquez, J.G. García-Olivares, C. Lizarazo-Ortega; M.C. Martínez-Rodríguez, M.Á. Ibarra-Rodríguez. 2018. Análisis económico del uso de biofertilizantes comerciales en el cultivo del sorgo. Revista de la Facultad de Agronomía de Zulia 35:4.
Hungria, M, RA Ribeiro y MA. Nogueira. 2018. Draft Genome Sequences of Azospirillum brasilense Strains Ab-V5 and Ab-V6, Commercially Used in Inoculants for Grasses and Legumes in Brazil. Genome Announc. 17;6(20): e00393-18.
Kaneko, T., .K. Minamisawa, T. Isawa, H. Nakatsukasa, H. Mitsui, Y. Kawaharada, et al. 2010. Complete Genomic Structure of the Cultivated Rice Endophyte Azospirillum sp. B510. DNA Research 17(1): 37-50.
Koul, V., D. Srivastava, P.P. Singh y M. Kochar. 2020. Genome-wide identification of Azospirillum brasilense Sp245 small RNAs responsive to nitrogen starvation and likely involvement in plant-microbe interactions. BMC Genomics 21: 821.
Lerner, A., Y. Okon y S. Burdam 2009. The wzm gene located on the pRhico plasmid of Azospirillum brasilense Sp7 is involved in lipopolysaccharide synthesis. Microbiology 155: 791-804.
Martin-Didonet, C.C.G., L.S. Chubatsu, E.M. Souza, M. Kleina, F.G.M. Rego, U. Liu et al. 2000. Genome Structure of the Genus Azospirillum. Journal of Bacteriology 182(14): 4113-4116.
Muñoz-Ramírez, Z.Y., A. Mendez-Tenorio, I. Kato, M.M. Bravo, C. Rizzato K. Thorell et al. 2017. Whole Genome Sequence and Phylogenetic Analysis Show Helicobacter pylori Strains from Latin America Have Followed a Unique Evolution Pathway. Frontiers in Cellular and Infection Microbiology 7: 50.
Rivera, D., S. Revale, R. Molina, J. Gualpa, M. Puente, G. Maroniche, et al. 2014. Complete Genome Sequence of the Model Rhizosphere Strain Azospirillum brasilense Az39, Successfully Applied in Agriculture. Genome Announc. 24;2(4): e00683-14.
Rossi, F.A., D.B. Medeot, J.P. Liaudat, M. Pistorio y E. Jofré, 2016. Azospirillum brasilense, mutations in flmA or flmB genes affect polar flagellum assembly, surface polysaccharides, and attachment to maize roots, Microbiological Research 190: 55-62.
Sanches-Santos, M., M.A. Nogueira y M. Hungria. 2021. Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants. Revista Brasileira de Ciencia do Solo 45:e0200128.
Seemann, T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14): 2068-2069.
Thackray, S.J., C. Bruckmann, J.R. Anderson, L.P. Campbell, R. Xiao, L. Zhao y S.K. Chapman. 2008. Histidine 55 of tryptophan 2, 3-dioxygenase is not an active site base but regulates catalysis by controlling substrate binding. Biochemistry 47(40): 10677-10684.
Uribe-Bueno, M., J.L. Hernández-Mendoza, C.A. García, V. Ancona y V. Larios-Serrato. 2020. Independent Tryptophan pathway in Trichoderma asperellum and T koningiopsis: New insights with bioinformatic and molecular analysis. BioRxiv 07.
Wisniewski-Dyé, F., L. Lozano, E. Acosta-Cruz, S. Borland, B. Drogue, C. Prigent-Combaret y P. Mavingui. 2012. Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes (Basel) 3(4): 576-602.
Zhang, P., T. Jin, S. Kumar-Sahu, J. Xu, Q. Shi, H. Liu y Y. Wang. 2019. The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis. Molecules 10;24(7): 1411.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Jessica I. Licea-Herrera, José L. Hernández-Mendoza, Jesús D. Quiroz-Velásquez, Ana V. Martínez-Vázquez, Alfonso Méndez-Tenorio

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The opinions expressed by the authors not necesarily reflect the position of the publisher or UCLA. The total or partial reproduction of the texts published in this journal is authorized, as long as the complete source and the electronic address of this journal is cited. Authors can publish the final version of their work on internet or any other medium, after it has been published in this journal.
Bioagro reserves the right to make textual modifications and technical adjustments to the figures of the manuscripts, in accordance with the style and specifications of the journal.