Effect of rhizosphere bacteria on germination and growth of bell pepper Capsicum annuum L. var. Cacique Gigante

Authors

  • María Eugenia Marquina Facultad de Ciencias, Universidad de Los Andes. Apdo. 5001. Mérida, Venezuela
  • Yuri Ramírez Facultad de Ciencias, Universidad de Los Andes. Apdo. 5001. Mérida, Venezuela.
  • Yulimar Castro Facultad de Ciencias, Universidad de Los Andes. Apdo. 5001. Mérida, Venezuela.

Keywords:

Azospirillum, IAA, phosphate solubilization, rhizobia

Abstract

Inoculation with plant growth promoting rhizobacteria (PGPR) represents an alternative to increase the germination and improve the production of horticultural crops. In  this  study  the  effect  of  six  rhizosphere  bacterial  isolates native to Merida, Venezuela was evaluated over the germination of bell pepper var. Cacique Gigante. Then, the best four isolates were selected to evaluate the effect on plant growth. A phosphate solubilization test was performed and the production of AIA was determined with three concentrations of tryptophan (0.025, 0.05, and 0.1 mg∙L-1). The germination test was performed in Petri dishes under aseptic conditions, inoculating the disinfected seeds with 108 UFC∙mL-1 of each strain at 28 °C in the dark. Growth was evaluated in vitro in MS medium with or without tryptophan (0.05 mg∙L-1) at 25 °C with 16/8 hours light/dark. As a result, all strains solubilized Ca3(PO4)2, and the Leu2A(1)2, YAC1, Nod2R and ME01 rhizobacteria produced IAA, with and without tryptophan. Seeds that after storing had a viability decreased from 98 to 75 % were stimulated by the rhizobacteria, increasing germination 13-23 %. In addition, they accelerated in one day the maximum germination with respect to the control. After 55 days of growth, there were increases in length and dry weight of root and stem inoculated with YAC1 and Leu2A(1)2, and with application of tryptophan. It was demonstrated that inoculation of bell pepper seeds with rhizobacteria, especially with Leu2A(1)2, represents an alternative to increase germination and growth of the plant.

Downloads

Download data is not yet available.

References

1. Achari, G. y R. Ramesh. 2014. Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops. Int. J. Microbiol. 14 p. Article ID 296521

2. Ahmad, F., I. Ahmad y M. Khan. 2005. Indole acetic acid production by the indigenous isolated of Azotobacter and Pseudomonas fluorescent in the presence and absence of tryptophan. Turk. J. Biol. 29: 29-34.

3. Antoun, H. 2001. PGPR activity of Rhizobium with non leguminous plants. J. Plant Physiol. 28: 45- 870.

4. Ayala-Villegas, M., O. Ayala-Garay, V. Aguilar-Rincón y T. Corona-Torres. 2014. Evolución de la calidad de semillas de Capsicum annuum L. durante su desarrollo en el fruto. Revista Fitotécnica Mexicana 37(1): 79-87.

5. Bailly C. y I. Kraner. 2011. Analyses of reactive oxygen species and antioxidants in relation to seed longevity and germination. Methods Mol. Biol. 773: 343-67.

6. Barreto-Figueiredo, M., A. Bonifacio, A. Cerqueira-Rodrígues y F. De Araujo. 2016. Plant growth-promoting rizobacteria: Key mecanisms of action. In: Choudhary y Varma (eds.). Microbial Mediated Induced Systemic Resistance in Plants. Springer Science, Singapore. pp. 23-37.

7. Bewley, J. y M. Baker. 1994. Physiology of development and germination. In: Seeds. Spriger Science. New York. p. 421.

8. Bewley, J. 1997. Seed germination and dormancy. The Plant Cell, 9:1055-1066.

9. Camelo, M., M. Vera y B. Bonilla. 2011. Mecanismos de acción de las rizobacterias promotoras del crecimiento vegetal. Revista Corpoica-Ciencia y Tecnología Agropecuaria 12(2): 159-166.

10. Carranco, R., J. Espinosa, P. Prieto-Dapena, C. Almoguera y J. Jordano. 2010. Repression by an auxin/indole acetic acid protein connects auxin signaling with heat shock factor-mediate seed longevity. Proc. Natl. Acad. Sci. USA. 107(50): 21908-13

11. Chaya, D. y P. Basu. 2000. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiological Research 155(2):127-130.

12. Corrales-Ramírez, L., Z. Arévalo-Galvez y V. Moreno-Burbano. 2014. Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal. Revista Nova 12(21): 67-79.

13. Costacurta, A. y J. Vanderleyden. 1995. Synthesis of Phytohormones by plant associated bacteria. Critical Reviews in Microbiology. 21(1): 1-18.

14. Davies, F., C. Calderón y Z. Huamán. 2005. Influence of Arbuscular Mycorrhizae indigenous to Peru and a flavonoid on growth, yield and leaf elemental concentration of “Yungay” Potatoes. Hort Science. 40(2): 381-385.

15. Díaz-Vivancos, P., G. Barba-Espín y J. Hernández. 2013. Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Rep. 32:1491-1502.

16. Di Barbaro, G., S. Pernasetti y A. Stegmayer. 2005. Evaluación del efecto de Azospirillum brasilense en la germinación y emergencia del pimiento pimentonero (Capsicum annuum L. var. Trompa de elefante). Revista del Cizas 6(1-2): 74-85.

17. Dobbelaere, S., J. Vanderleyden y Y. Okon. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences. 22:107-149

18. Döbereiner, J. y J. Day. 1976. Associative Symbiosis in Tropical Grasses. Characterization of Microorganism and Dinitrogen Fixing Sites. In: W. Newton y C. Nyman (eds.). Proceedings of the First International Symposium on Nitrogen Fixation Washington State University Press, Pullman. pp. 518-538.

19. Eisvand, H., R. Tavakkol-Afshari, F. Sharifzadeh, H. Maddah Arefi y S. Hesamzadeh Hejazi. 2010. Effects of hormonal priming and drought stress on activity and isozyme profiles of antioxidant enzymes in deteriorated seed of tall wheatgrass (Agropyron elongatum Host). Seed Science and Technology 38(2): 280-297.

20. Esquivel-Cote, R. Gavilanes-Ruiz, M. Cruz-Ortega, R. y P. Huante. 2013 Importancia agrobiotecnológica de la enzima ACC desaminasa en rizobacterias, una revisión. Fitotecnia Mexicana 36(3): 251-258.

21. FAO (Food and Agriculture Organization). 2006. Datos agrícolas de FAOSTAT. Índices de producción. http://faostat.fao.org/faostat/ (consulta del 04/11/2015).

22. Fernández, L., P. Zalba y M. Gómez. 2005. Bacterias solubilizadoras de fosfato inorgánico aisladas de la región sojera. Cienc. Suelo. 23(1): 31-37.

23. Ferrera-Cerrato, R., M. González y M. Rodríguez. 1993. Manual de Agromicrobiología. Editorial Trillas. México. 139 pp.

24. García-Fraile, P., L. Carro, M. Robledo, M. Ramírez-Bahena, J. Flores-Félix, M. Fernández et al. 2012. Rhizobium promotes non-legumes growth and quality in several production steps: Towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7(5): e38122.

25. Goldstein, A., H., K. Braverman y N. Osorio. 1999. Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiology Ecology 30: 295-300.

26. Gutiérrez-Zamora. M. y E. Martínez-Romero. 2001. Natural endophytic association between Rhizobium etli and maize (Zea maiz). J. Biotech. 91: 117-126.

27. Hassan, T. y A. Bano. 2015. The stimulatory effects of L-tryptophan and plant growth promoting rhizobacteria (PGPR) on soil health and physiology of wheat. J. Soil Sci. Plant Nutr. 15(1): 190-201.

28. Kloepper, J., M. Shroth y T. Miller. 1980. Effects of rhizosphere colonization by plant Growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70: 1078-1082.

29. Luna-Martínez, L., R. Martínez-Peniche, M. Hernández-Iturriaga, S. Arvizi-Medrano y J. Pacheco-Aguilar. 2013. Caracterización de rizobacterias aisladas de tomate y su efecto en el crecimiento de tomate y pimiento. Revista Fitotécnica Mexicana 36(1): 63-69.

30. Malhotra, M. y S. Srivastava. 2006. Targeted engineering of Azospirillum brasilense SM with indole acetamide pathway for IAA over-expression. Can. J. Microbiol. 52(11): 1078-1084.

34. Malhotra, M. y S. Srivastava. 2009. Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur. J. Soil Biol. 45: 73-80.

31. Marquina, M., N. González y Y. Castro. 2011. Caracterización Fenotípica y genotípica de doce rizobios aislados de diversas regiones de Venezuela. Biología Tropical 59(3): 1017-1039.

32. Nautiyal, C. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett.170:265-270.

33. Pazos, M., A. Hernández, V. Paneque y J. Santander. 2000. Caracterización de cepas del género Azospirillum aisladas de dos tipos de suelos de la localidad de San Nicolás de Bari. Cultivos Tropicales (CU) 21(3): 19-23.

34. Pedraza, R., A. Ramírez-Mata, M. Xiqui y B. Baca. 2004. Aromatic amino acid amino-transferase and activity índole-3-acetic acid production by associative nitrogen fixing bacteria. Microbiology Letters 233: 15-21.

35. Peix, A., B. Rivas, P. Mateos, C. Rodríguez, E. Martínez, y H. Velásquez. 2001. Growth promotion of chickpea and barley by a phosphate solubilising strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol. Biochem. 33: 103-110.

36. Reyes, I., A. Luimar, E. Hind y V. Alexis. 2008. Selección y evaluación de rizobacterias promotoras del crecimiento en pimentón y maíz. Bioagro 20(1): 37-48.

37. Rivera-Alegría, M. 2014. Evaluación a la respuesta del pimiento (Capsicum annuum L.) var. Cannon y del pepino (Cucumis sativa L.) var. Primavera a la inoculación con rizobacterias. Tesis. Facultad de Química. Universidad Autónoma de Querétaro. 94 p.

38. Rodríguez-Cáceres, E. 1982. Improved medium for isolation of Azospirillum ssp. Appl. Environ. Microbiol. 44(4): 990-991.

39. Rodríguez, H. y R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17 (4-5): 319-339.

40. Rojas, A., A. Rodríguez, S. Montes, S. Pérez, A. Rodríguez y A. Guerrero. 2010. Evaluación de la promoción del crecimiento de Cynodon dactylon L. por rizobacterias productoras de fitohormonas aisladas de un suelo contaminado con hidrocarburos derivados del petróleo. Polibotánica 29: 131-147.

41. Sambrook, J., E. Fritsch y T. Maniatis. 1989. Molecular cloning: A laboratory manual. Second edition. Volumes 1, 2 and 3. Current protocols in molecular biology. Volumes 1 and 2. Cold Spring Harbobor, New York. 1626 p.

42. Santillana, N., C. Arellano y D. Zuñiga. 2005. Capacidad del Rhizobium de promover el crecimiento en plantas de tomate (Lycopersicon esculentum Miller). Ecología Aplicada 4(1,2): 47-51.

43. Taiz, L. y E. Zeiger. 2010. Plant Physiology, 5th Ed. Sinauer Sunderland

44. Tsavkelova, E., S. Klimova, T. Cherdyntseva y A. Netrusov. 2006. Microbial producers of plant growth stimulators and their practical use: a review. Appl. Biochem. Microbiol. 42: 117-126.

45. Vazallo, S., L. Ramírez, L. Carranza, B. García y B. Bernilla. 2013. Efecto de la inoculación de Rhizobium etli y Thrichoderma viride sobre el crecimiento aéreo y radicular de Capsicum annuum var. Longum. Rebiolest 1(1): 11-21

46. Zakharova, E., A. Alexander, V. Shcherbakov, V. Brudnik, G. Nataliya, S. Skripko, B. Bulkhin y V. Ignatov. 1999. Biosynthesis of indole-3-acetic acid in Azospirillum brasilense. Eur. J. Biochem. 259(3): 572-576.

Published

2020-05-23

How to Cite

Marquina, M. E., Ramírez, Y., & Castro, Y. (2020). Effect of rhizosphere bacteria on germination and growth of bell pepper Capsicum annuum L. var. Cacique Gigante. Bioagro, 30(1), 3-16. Retrieved from https://revistas.uclave.org/index.php/bioagro/article/view/2706

Issue

Section

Artículos