Plant growth promoting microorganisms on biocontrol of Alternaria alternata in tomato (Solanum lycopersicum L.)
Keywords:
Antagonism, Enterobacter sp., Penicillium rugulosum, PGPM, Trichoderma koningiiAbstract
The biocontrol effect of five plant growth promoting microorganisms (PGPM): Trichoderma koningii strain Vp, Penicillium rugulosum strain IR, Penicillium sp. strain 20, Enterobacter sp. strain CR, and Bacillus megaterium strain 24B2 was evaluated in laboratory and greenhouse conditions on two isolates of the pathogen Alternaria alternate identified as 475 and 485, during the cultivation of tomato plants (Solanum lycopersicum L.). For this, it was stated the following steps: 1) antagonism and germination in laboratory conditions, 2) plantlet growth in propagation trays, and 3) plant growth in pots using a natural soil. The biocontrol effect of these PGPM showed that T. koningiiVp induced the most antagonistic effect since the beginning until 72 hours of measuring on the two isolates of A. alternata, and also the germination percentage of seeds was increased significantly (P≤0.05).Likewise, at greenhouse conditions, itwas found that plantlets inoculatedwith both PGPM, T. koningii Vp and P. rugulosum IR, showed the lowest percentage of infection for the two pathogen isolates. In the pot experiment, the percentage of leaf spot infection on the plants inoculated with T. koningii Vp showed a significant (P≤0.05) biocontrol over pathogens, followed by those inoculated with Enterobacter sp. strain CR. It is concluded that PGPR evaluated over different experiments showed variability in their biocontrol competence and plant growth promotion of tomato, related to the pathogen A. alternate and the plant growth state.
Downloads
References
2. Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlling use of microorganisms in agriculture. Applied Microbiology Biotechnology 84: 11-18.
3. Carrillo, G., J. Juárez, D. Ruíz y R. Müller. 2000. Aumento del rendimiento de tomate (Lycopersicon esculentum Mill.) cuando la raíz se desarrolla colonizada por microorganismos. Biotecnología Aplicada 17: 171-176.
4. Castañeda, R. 2004. Actualización en los sistemas de clasificación e identificación de hongos hifomicetos. Instituto Nacional de Investigaciones Agrícolas (INIA). Maracaibo. pp. 3-61.
5. Compant, S., B. Duffy, J. Nowak, C. Ciement, y E. Barka, 2005. Use of plant growthpromotingbacteria for biocontrol of plant. diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology 71(9): 4951-4959.
6. Contreras-Cornejo, H., L. Macías, E. Del Val y J. Larsen 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiology Ecology 92(4): fiw036.
7. Hermosa, R., A. Viterbo, I. Chet, y E. Monte. 2012. Plant beneficial effects of Trichoderma and of its genes. Microbiology 158: 17-25.
8. Hossain, M., F. Sultana, M. Kubota y M. Hyakumachi, 2008. Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant Soil 304: 227-239.
9. Mejía, J. y M. Hernández. 2001. Evaluación de azoxystrobin en el control de la candelilla temprana (Alternaria solani) en el cultivo de tomate. Rev. Fac. Agron. (LUZ) 18: 106-116.
10. Martínez, B., D. Infante y Y. Reyes. 2013. Trichoderma spp. y su función en el control de plagas en los cultivos. Revista de Protección Vegetal 28(1): 1-11.
11. Murali, M., M. Thriveni, S. Manjula, S. Mythrashee y K. Amruthesh. 2016. Isolation of phosphate solubilization fungi from rhizosphere soil and its effect on seed growth parameters of different crop plants. Journal of Applied Biology and Biochemistry 4(06): 22-26.
12. Peña, H. e I. Reyes, 2007. Aislamiento y evaluación de bacterias fijadoras de nitrógeno y disolventes de fosfatos en la promoción del crecimiento de la lechuga (Lactuca sativa L.). Interciencia 32(8): 560-65.
13. Pieterse, C., C. Zamioudis,R. Berendsen, D. Weller, S. Van Wees y P. Bakker. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology 52: 347-375.
14. Reyes, I., L. Bernier y H. Antoun. 2002. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microbiology Ecology44: 39-48.
15. Reyes, I., L. Alvarez, H. El-Ayoubi, y A. Valery. 2008. Selección y evaluación de rizobacterias promotoras del crecimiento en pimen-tón y maíz. Bioagro 20(1): 37-48.
16. Li, R., F. Cai, G. Pang, Q. Shen, R. Li y W. Chen. 2015. Solubilization of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One 10(6): e0130081.
17. Shi, M., L. Chen, X. Wang, T. Zhang, P. Zhao, Y. Song et al. 2012. Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology 158: 166-175.
18. Tucci, M., M. Ruocco, L. De Masi, M. De Palma y M. Lorito. 2011. The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Molecular Plant Pathology 12: 341-354.
19. Valery, A. e I. Reyes 2013. Evaluación de rizobacterias promotoras del crecimiento bajo diferentes esquemas de fertilización en el cultivo de maíz variedad Himeca-95. Revista Colombiana de Biotecnología 15(2): 81-88.
20. Vera, R., B. Moreno, R. Acevedo y E. Trujillo. 2005. Caracterización de aislamientos de Trichodermas pp. por tipo de antagonismo y electroforesis de isoenzimas. Fitopatología Venezolana 18(1): 2-8.
21. Waghunde, R., R. Shelake y A. Sabalpara 2016. Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research 11(22): 1952-1965.
Published
How to Cite
Issue
Section
Rights of the author/s are from the year of publication
This work is under the license:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors not necesarily reflect the position of the publisher or UCLA. The total or partial reproduction of the texts published in this journal is authorized, as long as the complete source and the electronic address of this journal is cited. Authors have the right to use their articles for any purpose as long as it is done for non-profit purposes. Authors can publish the final version of their work on internet or any other medium, after it has been published in this journal.
Bioagro reserves the right to make textual modifications and technical adjustments to the figures of the manuscripts, in accordance with the style and specifications of the journal.