Edaphic microbiota in plantain lots of contrasting vigor, and relationships with soil properties

Authors

  • Hebandreyna González-García Programa de Ingeniería de la Producción Agropecuaria. Universidad Nacional Experimental Sur del Lago “Jesús María Semprum Santa Bárbara, estado Zulia. Venezuela.
  • Ana F. González Pedraza Facultad de Ciencias Agrarias, Grupo de Investigación en Agricultura y Ganadería Sostenibles (GIAS). Universidad de Pamplona. Pamplona, Norte de Santander, Colombia
  • Maryori Pineda Zambrano Programa de Ingeniería de la Producción Agropecuaria. Universidad Nacional Experimental Sur del Lago “Jesús María Semprum Santa Bárbara, estado Zulia. Venezuela.
  • Horci Escalante-García Postgrado de Agronomía. Universidad Centroccidental Lisandro Alvarado. Apdo. 400. Barquisimeto. Venezuela.
  • Gustavo Rodríguez-Yzquierdo Corporación Colombiana de Investigación Agropecuaria AGROSAVIA. Departamento de Semillas. Sede Central, Mosquera, Cundinamarca. Colombia.
  • Aníbal Soto-Bracho Universidad Nacional Experimental Sur del Lago “Jesús María Semprum” (UNESUR). Programa de Administración de Empresas Agropecuarias. Santa Bárbara, estado Zulia. Venezuela.

DOI:

https://doi.org/10.51372/bioagro332.8

Keywords:

Actinomycetes, Harton, microbial activity, microbiota, Musa AAB

Abstract

Edaphic organisms are responsible for regulation of biological processes, including mineralization and biological repair of the soil. In order to quantify the microbiota of the soil cultivated with plantain cv Harton in the South Maracaibo Lake, seven production units with lots of high (HV) and low vigor (LV) plants were selected. The number of hands per bunch, circumference of the mother plant and height of the succession sucker in 20 plants of each plot were measured. Likewise, soil samples at 15 cm depth were taken to quantify UFC of fungi, bacteria and actinomycetes, as well as soil physical, chemical and biological properties. Variables such as bulk density, fine particles content, organic matter, microbial carbon and microbial coefficient came out to be favorable in lots of HV plants. In general, no statistical differences in UFC of fungi and bacteria were observed between vigor lots; however, there were differences between HV and LV lots for actinomycetes, which result important organisms to determine dynamics in the soil and favor vigor of plantain plants under the study conditions.

Downloads

Download data is not yet available.

References

Acevedo, I., A. Sánchez y B. Mendoza. 2021. Evaluación del nivel de degradación del suelo en dos sistemas productivos en la depresión de Quíbor. II. Calidad del suelo. Bioagro 33(2): 127-134.

Acuña, O., W. Peña, E. Serrano, L. Pocasangre, F. Rosales, E. Delgado et al. 2006. La importancia de los microorganismos en la calidad y salud de suelos. In: XVII. Reunião Internacional da Associaҫão para a Cooperaҫãonas Pesquisas sobre Banana no Caribe e na América Tropical (ACORBAT). Santa Catarina, Brasil. pp. 222-232.

Anderson, T. y K. Domsch. 1989. Application of eco-physiological quotients (qCO2 and qD) on microbial biomass from soils of different cropping histories. Soil Biology and Biochemistry, 22: 251-255.

Chaurasia, A., B. Meena, A. Tripathi, K. Pandey, Rai, A., y B. Singh. 2018. Actinomycetes: an unexplored microorganism for plant growth promotion and biocontrol in vegetable crops. World Journal of Microbiology and Biotechnology 34 (9): 132.

Delgado, E., F. Rosales, J. Trejos, M. Villalobos y L. Pocasangre. 2010. Índice de calidad y salud de suelos para plantaciones bananeras en cuatro países de América Latina y El Caribe. Bioagro 22(1): 53-60.

Delin, S. y B. Lindén. 2002. Relations between net nitrogen mineralization and soil characteristics within an arable field. Acta Agric. Scand. Sect. B Soil Plant Sci. 52:78-85.

El-Gendy, M. A., Al-Zahrani, S. H. y A.M.A El-Bondkly. 2017. Construction of potent recombinant strain through intergeneric protoplast fusion in endophytic fungi for anticancerous enzymes production using rice straw. Applied Biochemistry and Biotechnology 183(1): 30-50.

FAOSTAT. 2019. Estadísticas producción de plátano. http://www.fao.org/faostat/es/ (consulta de febrero 10, 2021).

Feijoo, M.A. 2016. Microorganismos eficientes y sus beneficios para los agricultores. Científica Agroecosistemas 4(2): 31-40.

Gilmour, J.T. 1998. Carbon and nitrogen mineralization during co-utilization of biosolids and composts. In: S. Brown, J.S. Angle y L. Jacobs (eds.). Beneficial Co-utilization of Agricultural, Municipal, and Industrial By-products. Kluwer Academic. Dordrecht, The Netherlands. pp. 89-112.

González-Pedraza, A., J. Atencio, K. Cubillán, R. Almendrales, L. Ramírez y O. Barrios. 2014. Actividad microbiana en suelos cultivados con plátano (Musa AAB subgrupo plátano cv. Hartón) con diferente vigor de plantas. Rev. Fac. Agron. (LUZ) 31(suplemento 1): 526-538.

Grajo, M. R., L.C. Villegas y A.D. Montecillo. 2017. Effect of organic fertilizer amina P on the yield of pineapple (Ananas comosus L. Merr.) and soil microbial population. Philippine Agricultural Scientist 100: 12-20.

Haider, M.Z., F. Saeed, A. Ali, Q. Ali, N. Habib, M.T. Javed et al. 2020. Involvement of microbes in different abiotic stress environments of cropping lands. In: R. Roychowdhury, S. Choudhury, M. Hasanuzzaman and S. Srivastava (eds.). Sustainable Agriculture in the Era of Climate Change. Springer, Berlin. pp. 441-479.

Haney, C., B. Samuel, J. Bush y F. Ausubel. 2015. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1: 1-9.

Hart, P., J. August y A. West. 1989. Long term consequences of topsoil mining on select biological and physical characteristics of two New Zealand loessial soils under grazed pasture. Land Degradation & Development 1(2): 77-88.

Horwath, W.R. 2017. The role of the soil microbial biomass in cycling nutrients. In: K.R. Tate (ed.). Microbial Biomass: A Paradigm Shift in Terrestrial Biogeochemistry. World Scientific. London. pp. 41-66.

Jenkinson, D.S. 1981. The fate of plant and animal residues in soil. In: D.J. Greenland y M.H.B. Hayes (eds.). The chemistry of Soil Processes. Wiley. New York. pp. 505-561.

Kakraliya, M. y R. Singh. 2018. Effect of soil test crop response basis integrated nitrogen management on yield, quality and profitability of wheat (Triticum aestivum L.). Journal of Pharmacognosy & Phytochemistry 7(4): 532-534.

Meena, S.K. y V.S. Meena. 2017. Importance of soil microbes in nutrient use efficiency and sustainable food production. In: V.S. Meena, P. Kumar, J. Kumar y A. Pattanayak (eds.). Agriculturally Important Microbes for Sustainable Agriculture. Springer. Singapore. pp. 3-23.

Monsalve, D., J. Gutiérrez y W. Cardona. 2017. Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas: Una revisión. Revista Colombiana de Ciencias Hortícolas 11(2): 200-209.

Morocho, M., y M. Leiva-Mora. 2019. Micro-organismos eficientes, propiedades funcionales y aplicaciones agrícolas. Centro Agrícola 46(2): 93-103.

Nelson, P., Toussoun, T. y W. Marasas. 1983. Fusarium Species: Illustrated Manual for Identification. Pennsylvania State University Press. University Park, Pennsylvania, USA.

Olivares, B., M. Araya, C. Acevedo, J.C. Rey, P. Cañete, F. Gianini et al. 2020. Relationship between soil properties and banana productivity in two main areas in Venezuela. Journal of Soil Science and Plant Nutrition 20: 2512-2524.

Paolini, J. E. 2017. Actividad microbiológica y biomasa microbiana en suelos cafetaleros de los Andes venezolanos. Terra Latinoamericana 36: 13-22.

Qian, P., y J. Schoenau. 2002. Availability of nitrogen in solid manure amendments with different C:N ratios. Can. J. Soil Sci. 82: 219-225.

Rodríguez, G. 2009. Aspectos sobre la salud radical de banano en suelos de Venezuela. Producción Agropecuaria 2(1): 46-50.

Rodríguez, G., J. Becerra, M. Betancourt, S. Alzate, T. Miranda, C. Pisco y H. Sandoval. 2018. Modelo productivo de plátano para los Llanos Orientales. CORPOICA. Bogotá. 216 p.

Rodríguez, G., F. Leal y B. Naranjo. 2012. Situación actual de los cultivos frutales de mayor importancia en Venezuela. Rev. Fac. Agron. (UCV) Alcance 72(1): 195-209.

Rodríguez, G. y D. Lobo. 2004. Desarrollo y distribución de raíces en tres clones de musáceas y su relación con las propiedades de un suelo lacustrino de la Cuenca del lago de Valencia. Rev. Fac. Agron. (LUZ) 21: 121-128.

Rodríguez, V. y O. Rodríguez. 1998. Biometría de la cepa de plátano (Musa AAB subgrupo plátano cv. Hartón) en plantas con rendimientos superiores a 18 kilogramos por racimo, en Venezuela. Rev. Fac. Agron (LUZ) 15: 439-445.

Seneviratne, G. 2000. Litter quality and nitrogen release in tropical agriculture: A synthesis. Biol. Fertility Soils 31: 60-64.

Tate, R.L. 2000. Soil Microbiology (second ed.). Wiley. New York.

Vurukonda, S.S., D. Giovanardi y E. Stefani. 2018. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. International Journal of Molecular Sciences 19(4): 952.

Yang, Z., Z. Jiang, H. Chung y R. Liu. 2017. Assessing the impact of wood decay fungi on the modulus of elasticity of slash pine (Pinus elliottii) by stress wave non-destructive testing. International Biodeterioration & Biodegrada-tion 117: 123-127.

Published

2021-04-29

How to Cite

González-García, H., González Pedraza, A. F., Pineda Zambrano, M., Escalante-García, H., Rodríguez-Yzquierdo, G., & Soto-Bracho, A. (2021). Edaphic microbiota in plantain lots of contrasting vigor, and relationships with soil properties. Bioagro, 33(2), 143-148. https://doi.org/10.51372/bioagro332.8

Issue

Section

Artículos