Molecular detection of viruses infecting purple passion fruit (Passiflora edulis f. edulis) crops, plantlets and seeds from Eastern Antioquia (Colombia)

Authors

DOI:

https://doi.org/10.51372/bioagro342.3

Keywords:

Passifloraceae, plant viruses, RT-qPCR, sequencing

Abstract

Gulupa (Passiflora edulis f. edulis) is among the crops with the largest expansion rates in Antioquia (Colombia). This rapid increase has been accompanied by a rise in prevalence of vascular wilt (Fusarium oxysporum) and viral diseases. In this work, we evaluated the prevalence of four RNA viruses (SMV, CABMV, PFYMV and CMV), in addition to viruses from the genus Begomovirus and the badnavirus GBVA. The presence of viruses was investigated in 15 samples of plantlets and 15 of sexual seeds, asymptomatic and symptomatic, from crops from Eastern Antioquia. For RNA viruses, infection was determined by RT-qPCR; in the case of GBVA and begomoviruses, detection was performed using PCR. The presence of these viruses was further confirmed by HTS high-throughput sequence analysis of bulked samples (15x) which allowed the complete sequencing of PFYMV, SMV and GBVA. PFYMV and SMV were the most prevalent viruses in adult plants. PFYMV was detected in 33.3 % of symptomatic and 46.6 % of asymptomatic plants, while SMV was found in 33.3 % of symptomatic, and 20 % of asymptomatic plants. For GVBA and CMV, the prevalence was below 26.6 %. Interestingly, these four viruses had a high prevalence in sprouting seeds (SMV: 40 %, CMV: 13.3 %, PFYMV: 86.6 % and GBVA: 53.3 %) suggesting that sexual seeds are important for virus transmission in gulupa. Plantlets commercialized in the region showed significant levels of SMV (86.6 %), PFYMV (60 %), and GBVA (53.3 %). CABMV and begomoviruses were not detected in any sample. These results highlight the urgent need of implementing virus seed certification schemes for this crop.

Downloads

Download data is not yet available.

References

Agronet. 2020. Área, producción y rendimiento de gulupa en Colombia. https://n9.cl/dhvg (consulta noviembre l5, 2021).

Ali, A. y M. Kobayashi. 2010. Seed transmission of Cucumber mosaic virus in pepper. Journal of Virological Methods 163(2): 234-237.

Bankevich, A., S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin, A.S. Kulikov et al. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19(5): 455-477.

Bhat, A.I., T. Hohn y R. Selvarajan. 2016. Badnaviruses: The current global scenario. Viruses 8(6): 177.

Boratyn, G.M., D. Thierry-Mieg, B. Busby y T.L. Madden. 2019. Magic-BLAST, an accurate DNA and RNA-seq aligner for long and short reads. BMC Bioinformatics 20: 405.

Chomczynski, P. y N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162(1): 156-159.

Colariccio, A., R.M. Garcêz, L.K. Rodrigues, M. Eiras, L.A.M. Peruch y A.L.R. Chaves. 2018. Doenças causadas por vírus na cultura do maracujazeiro (Passiflora edulis). In: Peruch, L.A.M. y A.L. Schroeder (eds.). Maracujazeiro-azedo: polinização, pragas e doenças. EPAGRI. Florianópolis. pp.171-202.

Crestani, O.A., E.W. Kitajima, M.T. Lin y V.L.A. Marinho. 1986. Passion fruit yellow mosaic virus, a new tymovirus found in Brazil. Phytopathology 76: 951-955.

Doyle, J. 1991. DNA Protocols for Plants. In: Hewitt, G.M., A.W.B. Johnston y J.P.W. Young (eds.). Molecular Techniques in Taxonomy. Springer. Heidelberg. pp. 283-293.

Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792-1797.

Feng, J.L., S.N. Chen, X.S. Tang, X.F. Ding, Z.Y. Du y J.S. Chen. 2006. Quantitative determination of cucumber mosaic virus genome RNAs in virions by Real-Time Reverse Transcription-Polymerase Chain Reaction. Acta Biochimica et Biophysica Sinica 38(10): 669-676.

Fontenele, R.S., R.A. Abreu, N.S. Lamas, D.M.T. Alves-Freitas, A.H. Vidal, R.R. Poppiel et al. 2018. Passion fruit chlorotic mottle virus: molecular characterization of a new divergent geminivirus in Brazil. Viruses 10(4): E169.

Gao, L., X. Ding, K. Li, W. Liao, Y. Zhong, R. Ren et al. 2015. Characterization of Soybean mosaic virus resistance derived from inverted repeat-SMV-HC-Pro genes in multiple soybean cultivars. Theoretical and Applied Genetics 128: 1489-1505.

Gillaspie, A.G., G. Pio-Ribeiro, G.P. Andrade y H.R. Pappu. 2001. RT-PCR detection of seedborne Cowpea aphid-borne mosaic virus in peanut. Plant Disease 85: 1181-1182.

Gish, W. y D.J. States. 1993. Identification of protein coding regions by database similarity search. Nature Genetics 3(3): 266-272.

Gutiérrez, P., A. Rivillas, D. Tejada, S. Giraldo, A. Restrepo, M. Ospina, S. Cadavid, Y. Gallo y M. Marín. 2021. PVDP: A portable open source pipeline for detection of plant viruses in RNAseq data. A case study on potato viruses in Antioquia (Colombia). Physiological and Molecular Plant Pathology 113: 101604.

Jaramillo, H., M. Marín y P. Gutiérrez P. 2018. Molecular characterization of Soybean mosaic virus (SMV) infecting purple passion fruit (Passiflora edulis f. edulis) in Antioquia, Colombia. Archives of Phytopathology and Plant Protection 51(11-12): 617-636.

Jaramillo, H., M. Marín y P. Gutiérrez. 2019. Complete genome sequence of a passion fruit yellow mosaic virus (PFYMV) isolate infecting purple passion fruit (Passiflora edulis f. edulis). Revista Facultad Nacional de Agronomía Medellín 72(1): 8643-8654.

Joy, P.P. y C.G. Sherin. 2016. Diseases of passion fruit (Passiflora edulis) and their management. In: Kumar, A. y P. Mall (eds.). Insect Pests Management of Fruit Crops. Biotech. New Delhi. pp. 453-470.

Joshi, N.A. y J.N. Fass. 2011. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files. (version 1.33). https://github.com/najoshi/sickle (consulta de marzo 20, 2021).

Jover-Gil, S., A. Beeri, P. Fresnillo, A. Samach y H. Candela. 2018. Complete genome sequence of a novel virus, classifiable within the Potyviridae family, which infects passion fruit (Passiflora edulis). Archives of Virology 163(11): 3191-3194.

Kitajima. 2020. An annotated list of plant viruses and viroids described in Brazil (1926-2018). Biota Neotropica 20(2): e20190932.

King, A.M.Q. 2012. Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press. San Diego.

Kumar, S., G. Stecher, M. Li, C. Knyaz y K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547-1549.

Liberato, J.R. y F.M. Zerbini. 2020. Diseases of Passionfruit (Passiflora spp.). https://n9.cl/n12e9 (consulta de septiembre 18, 2020).

Melgarejo, L.M. 2019. Gulupa (Passiflora edulis), curuba (Passiflora tripartita), aguacate (Persea americana) y tomate de árbol (Solanum betaceum) Innovaciones. Universidad Nacional de Colombia, Bogotá. https://n9.cl/2s1v6 (consulta de julio 21, 2021).

Morales, F.J., I. Lozano, M. Castaño, J. Arroyave, A.C. Velasco y F. Varón. 2002. Partial characterization of a tymovirus infecting passion fruit in Colombia, South America. Journal of Phytopathology 150(4-5): 292-296.

Ortíz, E. y L. Hoyos. 2012. Descripción de la sintomatología asociada a fusariosis y comparación con otras enfermedades en gulupa (Passiflora edulis Sims.) en la región del Sumapaz (Colombia). Revista Colombiana de Ciencias Hortícolas 6(1): 110-116.

Robinson, J.T., H. Thorvaldsdóttir, W. Winckler, M. Guttman, E.S. Lander, G. Getz y J.P. Mesirov. 2011. Integrative Genomics Viewer. Nature Biotechnology 29(1): 24-26.

Rojas, M.R., R.L. Giltberson, D.R. Rusell y D.P. Mawell. 1993. Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Disease 77(4): 340-347.

Sepúlveda, M. 2020. Identificación molecular de virus que infectan gulupa (Passiflora edulis sims) en cultivos asintomáticos y material de siembra en Antioquia. Tesis Ingeniería Biológica. Universidad Nacional de Colombia sede Medellín. 26 p.

Sierra-Mejía, A., Y. Gallo-García, M. Estrada-Arteaga, P.A. Gutiérrez y M. Marín-Montoya. 2020. Detección molecular de seis virus de ARN en brotes de tubérculos de papa criolla (Solanum phureja) en Antioquia, Colombia. Bioagro 32(1): 3-14

Spadotti, D.M.A., V.H. Bello, G.M. Favara, O.S. Stangarlin, R. Krause-Sakate, J.A.M. Rezende. 2019. Passiflora edulis: new natural host of Melochia yellow mosaic virus in Brazil. Australasian Plant Disease Notes 14: 23.

Vaca-Vaca, J.C., E.C. Carrasco-Lozano y K. López-López. 2017. Molecular identification of a new begomovirus infecting yellow passion fruit (Passiflora edulis) in Colombia. Archives of Virology 162(2): 573-576.

Valverde, R., S. Nameth y R. Jordan. 1990. Analysis of double-stranded RNA for plant virus diagnosis. Plant Disease 74: 255-258.

Vidal, A.H., M.M. Sanches, D.M.T. Alves-Freitas, E.F.M. Abreu, C. Lacorte, B. Pinheiro-Lima et al. 2018. First World Report of Cucurbit aphid-borne yellows virus infecting Passionfruit. Plant Disease 102(12): 2665.

Xanthis, C.K., V.I. Maliogka, H. Lecoq, C. Dezbiez, I. Tsvetkov, N.I. Katis. 2015. First report of cucumber mosaic virus infecting watermelon in Greece and Bulgaria. Journal of Plant Pathology 97(2): 391-403.

Published

2022-05-01

How to Cite

Cardona, D., Gallo García, Y., Higuita, M., Hoyos Sánchez, R., Gutiérrez Sánchez, P., & Marín Montoya, M. (2022). Molecular detection of viruses infecting purple passion fruit (Passiflora edulis f. edulis) crops, plantlets and seeds from Eastern Antioquia (Colombia). Bioagro, 34(2), 125-138. https://doi.org/10.51372/bioagro342.3

Issue

Section

Artículos