Effect of processing methods on the content of phenolic compounds in Vicia faba L. tissues grown in field and greenhouse

Authors

DOI:

https://doi.org/10.51372/bioagro343.2

Keywords:

Bioactive compound, broad bean, drying method, field experiment, freeze-drying

Abstract

Environmental conditions during the growth of Vicia faba plants and post-harvest processing methods influence its contents of secondary metabolites. In this study, total phenolic compounds (TP) and total flavonoids (TF) were quantified in broad bean plants at 10, 15 and 20 days after emergence (DAE), in floral buds and open flowers developed in the field or in a greenhouse with soil (GH-S) or tezontle (GH-T) as substrate. The effects of post-harvest processing, namely oven-drying and freeze-drying, were also evaluated. The analysis of variance showed, in all growth conditions, that the content of TP and TF varied significantly (P≤0.05 or P≤0.01) according to the age of the plant or the flowering stage, the processing methods and the interaction between those factors. Field-grown plants at 10, 15 and 20 DAE exhibited a higher mean value of TP (113.55 mg·g·-1 of gallic acid equivalent) and TF (126.60 mg·g·-1 of quercetin equivalent) with oven-dried samples, compared with those plants harvested in GH-S and GH-T conditions. Drying in the oven was most efficient in conserving phenolic compounds in field plants while freeze-drying preserved the levels of metabolites in greenhouse plants more effectively. In order to obtain the maximum content of phenolic compounds in minimal time, it is suggested to grow broad beans in the field, harvest plants at 10 DAE, and process them by oven-drying.

Downloads

Download data is not yet available.

References

Alruwaih, N. and V.A. Yaylayan. 2017. Comparative evaluation of bioactive compounds in lyophilized and tray-dried rocket (Eruca sativa). Journal of Food Processing and Preservation 41: e13205.

Andreotti C., G. Costa and D. Treutter. 2006. Composition of phenolic compounds in pear leaves as affected by genetics, ontogenesis and the environment. Scientia Horticulturae 109: 130-137.

Barros L., M. Dueñas, A.M. Carvalho, I.C.F.R. Ferreira and C. Santos-Buelga. 2012. Characterization of phenolic compounds in flowers of wild medicinal plants from northeastern Portugal. Food and Chemical Toxicology 50: 1576-1582.

Boukhanouf S., H. Louaileche and D. Perrin. 2016. Phytochemical content and in vitro antioxidant activity of faba bean (Vicia faba L.) as affected by maturity stage and cooking practice. International Food Research Journal 23(3): 954-961.

Calixto-Muñoz, J.J, D. de J. Pérez-López, A. González-Huerta, O. Franco-Mora, A. Morales-Pérez y A. D. Solís-Méndez. 2020. Variabilidad en el contenido de taninos, proteína y propiedades físicas en granos de haba (Vicia faba L.). Bioagro 32(3): 215-224.

Chaieb N., J.L. González, M. López-Mesas, M. Bouslama and Valiente, M. 2011. Polyphenols content and antioxidant capacity of thirteen faba bean (Vicia faba L.) genotypes cultivated in Tunisia. Food Research International 44: 970-977.

Çoklar H. and M. Akbulut. 2017. Effect of sun, oven and freeze-drying on anthocyanins, phenolic compounds and antioxidant activity of black grape (Ekşikara) (Vitis vinifera L.). S. Afr. J. Enol. Vitic. 38(2): 264-272.

CONAGUA (Comisión Nacional del Agua). 2019. Servicio Meteorológico Nacional). Climatological Statistical Information. https://n9.cl/yg0t1 (retrieved December 3, 2019)

Creus, E.G. 2004. Compuestos fenólicos. Un análisis de sus beneficios para la salud. Offarm 23(6): 80-84.

Cubero I.J. 1974. On the evolution of Vicia faba L. Theoretical and Applied Genetics 45: 47-51.

Duan S., S.J. Kwon, Y.J. Lim, C.S. Gil, C. Jin and S.H. Eom. 2021. L-3,4-dihydroxy-phenylalanine accumulation in faba bean (Vicia faba L.) tissues during different growth stages. Agronomy 11: 502.

Etemadi F., M. Hashemi, R. Randhir, O. Zandvakili and A. Ebadi. 2018. Accumulation of L-DOPA in various organs of faba bean and influence of drought, nitrogen stress, and processing methods on L-DOPA yield. The Crop Journal CJ-00270: 1-9.

Florán-Garduño B. and C. Rangel-Barajas. 2005. Activación de receptores dopaminérgicos por L-DOPA. De la acción terapéutica a las discinesias. Revista Biomédica 16(4): 273-280.

Feduraev P., G. Chupakhina, P. Maslennikov, N. Tacenko and L. Skrypnik. 2019. Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus L. and Rumex obtusifolius L. at different growth stages. Antioxidants 8: 237.

Fuentes-Herrera P.B., A. Delgado-Alvarado, B.E. Herrera-Cabrera, M.L. Luna-Guevara y J.I. Olvera-Hernández. 2020. Quantification of isoflavones in stems of faba bean (Vicia faba L.). Revista de la Facultad de Ciencias Agrarias UNCuyo 52(2): 43-51.

Herald T.J., P. Gadgil and M. Tilley. 2012. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J Sci Food Agric 92: 2326–2331.

Jiang X., Y. Liu, W. Li, X. Jiang, L. Zhao, F. Meng, Y. Wang et al. 2013. Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLOS ONE 8(4): e62315.

John K.M.M., S. Natarajan and D.L. Luthria. 2016. Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions. Food Chemistry 211: 347-355.

John K.M.M., F. Khan, D.L. Luthria, B. Matthews, W.M. Garrett and Natarajan S. 2017. Proteomic and metabolomic analysis of minimax and Williams 82 soybeans grown under two different conditions. J Food Biochem. 41: e12404.

Julkunen-Tiitto R., N. Nenadis, S. Neugart, M. Robson, G. Agati, J. Vepsäläinen et al. 2015. Assessing the response of plant flavonoids to UV radiation: an overview of appropriate techniques. Phytochem Rev. 14: 273-297.

Kirakosyan A., P.B. Kaufman, J.A. Duke, S. Warber and S. Bolling. 2004. The production of L-DOPA and isoflavones in seeds and seedlings of different cultivars of Vicia faba L. (faba bean). Journal of Evidence-Based Integrative Medicine 1(2): 131-135.

Křížová L., K. Dadáková, J. Kašparovská and T. Kašparovský. 2019. Isoflavones. Molecules 24: 1076.

Løvdal T., K.M. Olsen, R. Slimestad, M. Verheul and C. Lillo. 2010. Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71: 605-613.

Mejía-Meza E.I., J.A. Yáñez, N.M. Davies, B. Rasco, F. Younce, C.M. Remsberg and C. Clary. 2008. Improving nutritional value of dried blueberries (Vaccinium corymbosum L.) combining microwave-vacuum, hot-air drying and freeze drying technologies. International Journal of Food Engineering 4(6): 1-6.

Molina M.J.C, y T.L. Córdova. 2006. Recursos Fitogenéticos de México para la Alimentación y la Agricultura: Informe Nacional 2006. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación y Sociedad Mexicana de Fitogenética, A.C. Chapingo, México. 172p.

Multari S., D. Stewart and W.R. Russell. 2015. Potential of fava bean as future protein supply to partially replace meat intake in the human diet. Comprehensive Reviews in Food Science and Food Safety 14: 511-522.

Neugart S., S. Rohn and M. Schreiner. 2015. Identification of complex, naturally occurring flavonoid glycosides in Vicia faba and Pisum sativum leaves by HPLC-DAD-ESI-MSn and the genotypic effect on their flavonoid profile. Food Research International 76: 114-121.

Olennikov D.N., N.K. Chirikova, N.I. Kashchenko, T.G. Gornostai, I.Y. Selyutina and I.N. Zilfikarov. 2017. Effect of low temperature cultivation on the phytochemical profile and bioactivity of arctic plants: a case of Dracocephalum palmatum. Int. J. Mol. Sci. 18: 2579.

Ortiz-López M., A. Delgado-Alvarado, B.E. Herrera-Cabrera, M.L. Arévalo-Galarza y A.I. Barrera-Rodríguez. 2019. Efecto de dos métodos de secado en los compuestos fenólicos totales, L-DOPA y la actividad antioxidante de Vicia faba L. Nova Scientia 11(23): 198-219.

Patil S.A., O.A. Apine, S.N. Surwase and J.P. Jadhav. 2013. Biological sources of L-DOPA: An alternative approach. Advanced Parkinsonʼs Disease 2(3): 81-87.

Prabhu, D.S. and Rajeswari, V.D. 2018. Nutritional and biological properties of Vicia faba L.: A perspective review. International Food Research Journal 25(4): 1332-1340.

Randhir R. and K. Shetty. 2003. Light-mediated faba bean (Vicia faba) response to phytochemical and protein elicitors and consequences on nutraceutical enhancement and seed vigour. Process Biochemistry 38: 945-952.

Salehi B., I.M. Abu-Reidah, F. Sharopov, N. Karazhan, J. Sharifi-Rad, M. Akram et al. 2020. Vicia plants. A comprehensive review on chemical composition and phytopharmacology. Phytotherapy Research 2020: 1–20.

Sinkovič L., J. Hribar, L. Demšar, R. Vidrih, M. Nečemer, P. Kump, and D. Žnidarčič. 2017. Bioactive compounds and macroelements of chicory plants (Cichorium intybus L.) after hydroponic forcing in different nutrient solutions. Hortic. Environ. and Biotechnol. 58(3): 274-281.

Siqueira-Soares R.C., A.R. Soares, A.V. Parizotto, M.L.L. Ferrarese and O. Ferrarese-Filho. 2013. Root growth and enzymes related to the lignification of maize seedlings exposed to the allelochemical L-DOPA. The Scientific World Journal 2013: ID 134237.

Steiner A.A. 1984. The universal nutrient solution. Proceedings of the 6th International Congress on Soilless Culture. International Society for Soilless Culture ISOSC. Wageningen. The Netherlands. 633-649 pp.

Trinh L.T.P., Y. S. Choi and H. J. Bae. 2018. Production of phenolic compounds and biosugars from flower resources via several extraction processes. Industrial Crops & Products 125: 261-268.

Turco I., G. Ferretti and T. Bacchetti. 2016. Review of the health benefits of faba bean (Vicia faba L.) polyphenols. Journal of Food and Nutrition Research 55(4): 283-293.

Published

2022-08-31

How to Cite

Fuentes-Herrera, P., Delgado-Alvarado, A., Herrera-Cabrera, B., Tornero-Campante, M., Arévalo-Galarza, M. de L., Martínez-Ayala, A., & Barrera-Rodríguez, A. (2022). Effect of processing methods on the content of phenolic compounds in Vicia faba L. tissues grown in field and greenhouse. Bioagro, 34(3), 221-232. https://doi.org/10.51372/bioagro343.2