Growth analysis of tarragon (Artemisia dracunculus L.) in response to Trichoderma harzianum and Glomus cubense

Authors

DOI:

https://doi.org/10.51372/bioagro351.9

Keywords:

Aromatic plants, biostimulants, growth rate, inoculation

Abstract

Tarragon (Artemisia dracunculus L.) is an aromatic and medicinal plant, with great export potential and competitive commercial value, so it is essential to evaluate strategies aimed at increasing the production of the crop. The objective of the present study was to evaluate the growth of tarragon cultivated in greenhouse in response to the inoculation of Trichoderma harzianum (Rifai) and Glomus cubense (Y. Rodr. & Dalpé), and the combination of both. The study was conducted in Cuernavaca, Morelos, Mexico, where tarragon seedlings inoculated with T. harzianum and G. cubense were used. The crop growth was assessed at transplantation, and at 60 days after transplantation; in each sampling leaf area, greenness index (SPAD units), weight of dry biomass in each plant were measured. The relative growth rate and absolute growth rate of the crop were also calculated. The largest leaf area, greenness index, dry biomass, relative growth rate and absolute growth rate of the crop, were obtained with the co-inoculation of T. harzianum and G. cubense. The individual application of T. harzianum generated a better response in the variables evaluated compared to G. cubense. In conclusion, inoculation of rhizospheric microorganisms increased the growth in the tarragon crop.

Downloads

Download data is not yet available.

References

Apáez B.P., J.A.S. Escalante, M.T. Rodríguez, M.C. González y M. Apáez. 2014. Analysis of cowpea growth and production in maize trellis with nitrogen and phosphorus. International Journal of AgriScience 4(2): 102-108.

Arabhosseini A., W. Huisman, A. van Boxtel y J. Müller. 2009. Modeling of thin layer drying of tarragon (Artemisia dracunculus L.). Industrial Crops and products 29: 53-59.

Azcón-Bieto J. y M. Talón. 2008. Fundamentos de Fisiología Vegetal. Mcgraw-Hill – Interamericana de España. Madrid.

Bader A.N., G.L. Salerno, F. Covacevich y V. Consolo. 2019. Native Trichoderma harzianum strains from Argentina produce índole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum L.). Journal of King Saud University-Science 32(1): 867-873.

Bader A.N., G.L. Salerno, F. Covacevich y V. Consolo. 2020. Bioformulación de Trichoderma harzianum en sustrato sólido y efectos de su aplicación sobre plantas de pimiento. Revista de la Facultad de Agronomía, La Plata 119(1): 1-9.

Bécquer-Granados C.J., A.B. Puentes-Pérez, U. Ávila-Cordovi, M. Quintana-Sanz, Y. Galdo-Rodríguez, F. Medinilla-Nápoles y A. Mirabales-Valdés. 2016. Efecto de la incolación con Bradyrhizobium sp. y Trichoderma harzianum en triticale (X. Triticosecale Wittmack), en condiciones de estrés por sequía. Pastos y Forrajes 39(1): 19-26.

Calero H.A., E.R. Quintero y Y.D. Pérez. 2017. Utilización de diferentes bioproductos en la producción de frijol común (Phaseolus vulgaris L.). Agrotecnia de Cuba 41(1): 17-24.

Cano M.A. 2011. Interacción de microorganismos benéficos en plantas: micorrizas, Trichoderma spp. y Pseudomonas spp. una revisión. Revista U. D. C. A. Actualidad & Divulgación Científica 14(2): 15-31.

Díaz, G., G. Rodríguez, L. Montana, T. Miranda, C. Basso y M. Arcia. 2020. Efecto de la aplicación de bioestimulantes y Trichoderma sobre el crecimiento en plántulas de maracuyá (Passiflora edulis Sims) en vivero. Bioagro 32(3): 195-204.

Fernández F., R. Gómez, L.F. Vanegas, M.A. Martínez, B.M. de la Noval y R. Rivera. 2000. CU22641 – Producto inoculante micorrizógeno. Oficina Nacional de Propiedad Industrial. La Habana, Cuba. https://n9.cl/49tt2 (consulta de agosto 1, 2022).

Katan J. y A. Gamliel. 2012. Soil solarization for the management of solborne pests: the challenges, historical perspective, and principles. In: A. Gamliel y J. Katan (eds.). Soil Solarization: Theory and Practice The American Phytopathological Society. St Paul, Minnesota, USA. pp. 45-52.

Martín A.G.M., E.R. Rivera, D.A. Pérez y P.L. Arias. 2012. Respuesta de la Canavalia ensiformis a la inoculación micorrízica con Glomus cubense (Cepa INCAM-4), su efecto de permanencia en el cultivo de maíz. Cultivos Tropicales 33(2): 20-28.

Mena E.A., P.Y. Mujica, S.K. Fernández y R.J.D. Amico. 2015. Viabilidad de esporas y funcionamiento de un inoculante líquido a base de Glomus cubense en Sorghum bicolor L. cv. Moench. Cultivos Tropicales 36(3): 27-33.

Michels-Mighty J., P. Rodríguez-Fernández y G. Montero-Limonta. 2020. Fertirriego e inoculación con Glomus cubense sobre crecimiento y productividad del pimiento en cultivo protegido. Maestro y Sociedad 17(2): 212-225.

Obolskiy D., I. Pischel, B. Feistel, N. Glotov y M. Heinrich. 2011. Artemisia dracunculus L. (Tarragon): A critical review of its traditional use, chemical composition, pharmacology, and safety. Journal of Agricultural and Food Chemistry 59(21): 11367-11384.

Rakesh, P., P. Vijay, D. Madurima, M. Mahesh y C.M. Ramesh. 2017. Plant Growth Analysis. Manual of ICAR Sponsored Training Programme on Physiological Techniques to Analyze the Impact of Climate Change on Crop Plant. Indian Agricultural Research Institute, New Delhi, India. vol. 130, pp. 103-107.

Reyes-Pérez J.J., M. Rivero-Herrada, C.J. Andagoya-Fajardo, F.A. Beltrán-Morales, L.G. Hernández-Montiel, A.E. García-Liscano y F.H. Ruíz-Espinoza. 2021. Emergencia y características agronómicas del Cucumis sativus a la aplicación de quitosano, Glomus cubense y ácidos húmicos. Biotecnia 23(3): 38-44.

Rodríguez Y., Y. Dalpé, S. Séguin, K. Fernández, F. Fernández y R. A. Rivera. 2011. Glomus cubense sp. nov., an arbuscular mycorrhizal fungus from Cuba. Mycotaxon 118: 337-347.

Steiner, A.A. 1984. The universal nutrient solution. In Proc. 6th International Congress on Soilless Culture. ISOSC. Wageningen, The Netherlands. pp. 633-649.

SIAP (Sistema de Información Agropecuaria). 2022. Sistema de Información Agropecuaria de Consulta. SAGARPA. México. https://n9.cl/cwod (consulta de agosto 1, 2022).

Tamayo-Aguilar, Y., P. Juárez-Lopez, J.A. Chavez-Garcia, A.T. Iran, D. Guillen-Sánchez, J.O. Pérez-González y O. Baque-Fuentes, O. 2021. Beneficial microorganisms enhance the growth of basil (Ocimum basilicum L.) under greenhouse conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49(4): 12452-12452.

Tamayo-Aguilar Y., P. Juárez-López, J.A. Chávez-García, I. Alia-Tejacal, D. Guillen-Sánchez, J.O. Pérez-González, et al. 2022. Biofertilizantes en el crecimiento de estragón (Artemisia dracunculus L.) en condiciones de invernadero. ITEA-Información Técnica Económica Agraria 118(2): 198-212.

Tavera-Zavala D.D., J.J. Hernández-Escareño, G. Ulibarri y J.M. Sánchez-Yáñez. 2017. Inoculación de Trichoderma harzianum en Zea mays y su efecto a la adición del fertilizante nitrogenado al 50%. Journal of the Selva Andina Research Society 8(2): 115-123.

Published

2022-12-31

How to Cite

Chávez-García, J. A., Aguilar-Carpio, C., Juárez-López, P., Escalante-Estrada, J. A. S., Rueda-Barrientos, M. C., & Tamayo-Aguilar, Y. (2022). Growth analysis of tarragon (Artemisia dracunculus L.) in response to Trichoderma harzianum and Glomus cubense. Bioagro, 35(1), 75-80. https://doi.org/10.51372/bioagro351.9

Issue

Section

Nota Técnica