Detection of enzymatic compounds and antagonism of Bacillus species on the development of Macrophomina phaseolina
DOI:
https://doi.org/10.51372/bioagro371.5Keywords:
Biological control, hydrolytic enzymes, soil fungiAbstract
Macrophomina phaseolina (Tassi) Goid is a pathogen that causes damping off, stem rot and root rot disease in a broad host range. The method of biological control using bacteria of the genus Bacillus stands out as viable and effective in combating plant diseases. The aim of the present study was detecting the presence of enzymatic compounds produced by the Bacillus isolates and evaluating the in vitro antagonistic activity of the bacterial isolates against M. phaseolina, using the methods of paired culture, pathogen culture on antagonist culture, thermostable and volatile metabolites. The experiments were carried out at the Phytopathology Laboratory, Department of Technology and Social Science, Campus III – UNEB, in Juazeiro-BA. Of the nine Bacillus isolates provided by the LBM, all were molecularly identified, except for isolate B7. The fungus M. phaseolina was acquired from the Dept. of Micologia at Federal University of Pernambuco. The experiment was in a completely randomized design for the enzymatic test using three replicates, and for the antagonism studies a 4x5 factorial arrangement was used (four isolates and four methods of antagonistic activity and the control treatment) with five replicates. Data were subjected to analysis of variance and Scott-Knott test at 5% probability. The enzymes showed the rates: proteases (100 %), cellulases (88%), pectinases (77 %), and amylases (66 %), suggesting that the isolates could be promising in the biological control of pathogens. In the selection of isolates with greater antagonistic activity, the method of culturing the pathogen on the culture, proved to be the most efficient in inhibiting the growth of M. phaseolina.
Downloads
References
Acharya, S. and A. Chaudhary. 2012. Optimization of fermentation conditions for cellulases production by Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from Indian hot spring. Braz. Arch. Biol. Technol. 55(4): 4997-503.
Alqahtani, Y., S. More, R. Keerthana, I. Shaikh, K. Anusha, V. More et al. 2022. Production and Purification of Pectinase from Bacillus subtilis 15A-B92 and Its Biotechnological Applications. Molecules 27(13): 4195.
Amaro, J.K., C.B. Vieira and L.A. Sousa. 2018. Biological control of Colletotrichum gloeosporioides in pepper with isolates of Bacillus subtilis. Brazilian Journal of Agriculture 93(2): 195-209.
Arrarte, E., G. Garmendia, C. Rossini, M. Wisniewski and S. Vero. 2017. Volatile organic compounds produced by Antarctic strains of Candida sake play a role in the control of postharvest pathogens of apples. Biol. Control 109: 14-20.
Arrebola, E., R. Jacobs and L. Korsten. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108: 386-395.
Azevedo, D.M.Q., F. Rocha, F.M.G. Fernandes, C.A. Costa, M.F.S. Muniz, P.D. Barroso et al. 2020. Antagonistic effect of Trichoderma isolates and metabolites against Fusariumsolani and F. oxysporumin chickpea. Brazilian Journal of Development 6(6): 36344-36361.
Baard, V., O.O. Bakare, A.I. Daniel, M. Nkomo, A. Gokul, M. Keyster and A. Klein. 2023. Biocontrol Potential of Bacillus subtilis and Bacillus tequilensis against Four Fusarium Species. Pathogens 12(2): 254.
Bajpai, P. 1989. High-temperature alkaline α-amylase from Bacillus licheniformis TCRDC-B13. Biotechnology Bioengineering 33(1): 72-78.
Bedendo, I. 2018. P. Podridões de raiz e colo. In: Amorim, L., Rezende, J. A. M., Bergamin, F. A. (Eds). Manual de Fitopatologia 5: 573.
Burns, J.H., B.L. Anacker, S.Y. Strauss and D.J. Burke. 2015. Soil microbial community variation correlates most strongly with plant species identity. Followed by soil chemistry, spatial location and plants genus. AoB Plants7: 30.
Calvo, R.A., D. Peters and S. Cave. 2020. Advancing impact assessment for intelligent systems. Nat Mach Intell.2: 89-91
Camilo, T.A. and W. Pietro-Souza. 2023. Agentes bacterianos no controle in vitro da Alternaria alternatae, Macrophomina phaseolina: fitopatógenos do feijão. Revista Observatorio de la Economia Latino-americana. Curitiba 21(8): 8687-8706.
Carvalho, R.V., T.L.R. Corrêa, J.C.M. Silva, A.P. Viana and M.L.L. Martins. 2008. Otimização das condições de cultivo para a produção de amilases pelo termofílico Bacillus sp. e hidrólise de amidos pela ação da enzima. Ciênc. Tecnol. Aliment. Campinas 28(2): 380-386.
Coca, B.C. 2022. Otimização e caracterização de a-amilaseproduzida por Bacillus amyloliquefaciens. Dissertation for the Postgraduate Program in Environmental Technology at the Fluminense Federal University, Volta Redonda - RJ 103.
da Costa, T.E., V.R. Oliveira Maia, J.A. da Silva Neto, R.M. da Silva, A.M. Paiva Negreiros, R.S. Júnior and I.S. Araújo Holanda. 2023. Response of melon cultivars to infection by Macrophomina pseudophaseolina isolates and its effect on protein expression. Bioagro 35(3): 217-226.
Effmert, U., J. Kalderas, R. Warnke and B. Piechulla. 2012. Volatile mediated interactions between bactéria and fungi in the soil. J. Chem. Ecol. 38: 665-703.
Fiddaman, P.J. and S. Rossall. 1994. Effect of substrate on the production of antifungal volatiles from Bacillus subtilis J. Appl. Bacteriol.76: 395-405.
Gomes, D.P., G.C. Silva, A.Z. Kronka, S.B. Torres and J.R. de Souza. 2008. Qualidade fisiológica e incidência de fungos em sementes de feijão-caupiproduzidas do Estado do Ceará. Rev. Caatinga 21(2): 165-171.
Gouda, S., R.G. Kerry, G. Das, S. Paramithiotis, H.S. Shin and J.K. Patra. 2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiology Research 206: 131-140.
Hankin, L. and S.L. Anagnostakis. 1975. The use of solid media for detection of enzyme production by fungi. Mycologia 67: 597-607.
Hakim, S., T. Naqqash, S.M. Nawaz, I. Laraib, J.M. Siddique, R. Zia et al. 2021. Rizosphere Engineering with Plant Growt-Promoting Microorganism for Agriculture and Ecological Sustainability. Frontiers in Sustainable Food Systems 5: 617157.
Kannojia, P., K.K. Choudhary, A.K. Srivastava, and A.K. Singh. 2019. PGPR Bioelicitors: Induced Systemic Resistance (ISR) and Proteomic Perspective on Biocontrol. In PGPR Amelioration in Sustainable Agriculture. Chapter Four-Woodhead Publishing: Cambridge, UK. 67-84.
Khan, M., M. Salman, S.A. Jan and Z.K. Shinwari.2021. Biological control of fungal phytopathogens: A comprehensive review based on Bacillus species. MOJ Biol. Med. 6: 90-92.
Kashyap, D.R., S. Chandra, A. Kaul and R. Tewari.2000. Production, purification and characterization of pectinase from a Bacillus sp.DT7.World Journal of Microbiology and Biotechnology16: 277-282.
King, J.1965. Practical Clinical Enzymology. Van Nostrand. Madison, Winsconsin.
Kupper, K.C., N. Gimenes-Fernandes and A. de Goes. 2003. Controle biológico de Colletotrichum acutatum, agente causal da queda prematura dos frutos cítricos. Fitopatologia Brasileira 28(3): 251-257.
Leelasuphakul, W., P. Hemmaneea and S. Chuenchitt. 2008. Growth inhibitory properties of Bacillus subtilisstrains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biology and Technology 48: 113-121.
Li, D., X. Ni, K., K.; Zhang, Y., C. Lin, Y., L. Yang, F. 2018. Influence of lactic acid bacteria, celulase, celulase-producing Bacillus pumilusand their combinations on alfafa silage quality. J. Integr. Agric. 17: 172-186.
Nascimento, P.G.M.L., M.M.Q.Ambrósio, F.C.L. Freitas, B.L.S. Cruz, A.M.M. Dantas, R.S. Júnior and W.L. da Silva. 2018.Incidence of root rot of muskmelon in different soil management practices. European Journal of Plant Pathology 152(2): 433-446.
Marquez, N., M.L. Giachero, S. Declerck and D.A. Ducasse. 2021. Macrophomina phaseolina: General Characteristics of Pathogenicity and Methods of Control. Front. Plant. Sci.12: 634397.
Moreira, R.G., C.N. Nesi and L.L. May de Mio. 2014. Bacillus sp. and Pseudomonas putida as inhibitors of the Colletotrichum acutatum group and potential to control glomerella leaf spot. Biological Control 72: 30-37.
Mycobank. Macrophomina phaseolina. http://www.mycobank.org/Biolomics.-aspx?Table=Mycobank. Retrieved on July 2021.
Pan, D., A. Mionetto, S. Tiscornia and L.Bettucci. 2015. Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Mycotoxinresearch 31(3): 137-143.
Petermann, D. 2022. Uso de bactérias do gênero Bacillus sp. no controle biológico de Colletotrichum sp., agente causal da podridão amarga na macieira. Dissertation (Postgraduate degree in Plant Science na Plant Health). Federal University of Paraná. 103 p.
Pontecorvo, G., J.A. Roper, L.M. Chemmons, K.D. Macdonald and A.W.J. Bufton. 1953. The genetics of Aspergillus nidulans.Advances in Genetics 5: 141-238.
Rangel-Montoya, E.A., C.S. Delgado-Ramírez, E. Sepulveda and R. Hernández-Martínez. 2022. Biocontrol of Macrophomina phaseolina Using Bacillus amyloliquefaciens Strains in Cowpea (Vigna unguiculata L.). Agronomy 12(3): 676.
Ramyabharathi, S.A. and T. Raguchander. 2014. Mode of action of Bacillus subtilis EPCO16 against tomato Fusarium wilt. Biochem. Cell. Arch. 14: 47-50.
Ramyabharathi, S., L. Rajendran, G. Karthikeyan and T. Raguchander. 2016. Liquid formulation of endophytic Bacillus and its standardization for the management of Fusarium wilt in tomato. Bangladesh J. Bot. 45(2): 283-290.
Rezende, D.C., M.B. Fialho, S. Brand, S. Blumer and S. F. Pascholati. 2015. Antimicrobial activity of volatile organic compounds and their effect on lipid peroxidation and electrolyte loss in Colletotrichum gloeosporioides and Colletotrichum acutatum mycelia. African Journal of Microbiology Research 9(23): 1527-1535.
Selvankumar, T., M. Govarthanan, and M. Govindaraju. 2011. Endoglucanase production by Bacillus amyloliquefaciens using coffee pulp as substrate in solid-state fermentation. Int. J. Pharma. Bio. Sci. 2(3): 355-362.
Silva, C.R.D., A.B. Delatorre and M.L.L. Martins. 2007. Effect of the culture conditions on the production of an extracellular protease by thermophilic Bacillus sp. and some properties of the enzymatic activity. Brazilian Journal of Microbiology 38(2): 253-258.
Sobrinho, G., N. Brito, A. Santos and Q. Novaes. 2018. Atividade antagonista de Bacillus subtilis sobre doisisolados de Fusarium solani do maracujazeiro, por diferentes métodos. Enciclopédia Biosfera 15(28): 138.
Stephenson, K., N.M. Carter, C.R. Harwood, M.F. Petit-Glatron and R. Chambert. 1998. The influence of protein folding of late stages of the secretion of α-amylase from Bacillus subtilis. FEBS Letters 403(3): 385-389.
Teodoro, C.E.D. and M.L.L. Martins. 2000. Culture conditions for the production of thermostable amylase by Bacillus sp. Brazilian Journal of Microbiology 31(3): 298-302.
Tiwari, S., P. Pathak and R. Gaur. 2017. Sugarcane baggaseagro-waste material used for renewable cellulase production from Streptococcus and Bacillus sp. Res. J. Microbiol. 12(4): 255-265.
Torres, M.J., C. Perez-Brandan, G.Petroselli, R. Erra-Balsells, and M.C. Audisio. 2016. Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiol. Res. 182: 31-39.
Viteri, D.M. and A.M. Linares. 2017. Reaction of Phaseolus sp. genotypes to ashy stem blight caused by Macrophomina phaseolina. Euphytica 213(8): 199.
Yuan, J., L. Bin, N. Zhang, R. Waseem, Q. Shen and Q. Huang. 2012. Production of bacillomycin-and macrolactin-type antibiotics by Bacillus amyloliquefaciens NJN-6 for suppressing soil-borne plant pathogens. J. Agric. Food Chem. 60: 2976-2981.
Zhang, Y., T. Li., Y. Liu, X. Li, C. Zhang, Z. Feng et al. 2019. Volatile organic compouds produced by Pseudomonas chlororaphis subsp. Aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes. Journal of Agricutural and Food Chemistry 67(13): 3702-3710.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Paulo Vitor Pereira do Nascimento, Cristiane Domingos da Paz, Josineide Edinalva Pereira, Ana Rosa Peixoto, Adailson Feitoza de Jesus Santos
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Rights of the author/s are from the year of publication
This work is under the license:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors not necesarily reflect the position of the publisher or UCLA. The total or partial reproduction of the texts published in this journal is authorized, as long as the complete source and the electronic address of this journal is cited. Authors have the right to use their articles for any purpose as long as it is done for non-profit purposes. Authors can publish the final version of their work on internet or any other medium, after it has been published in this journal.
Bioagro reserves the right to make textual modifications and technical adjustments to the figures of the manuscripts, in accordance with the style and specifications of the journal.