Molecular variability of Hemileia vastratix Berk. & Br. in two Venezuelan states based on RAPD and REMAP markers

Authors

DOI:

https://doi.org/10.51372/bioagro373.7

Keywords:

Coffee rust, geographic zoning

Abstract

Coffee leaf rust, caused by Hemileia vastratix Berk. and Br. (Hv), is economically the most important disease of this crop worldwide. More than 50 physiological races have been identified, which indicate its genetic diversity, due to either by genetic mutations or by the presence of transposable genes. In this study, a total of 21 isolates of the fungus were characterized using RAPD and REMAP markers between the two techniques, including race XXXIX, two pathotypes Hv01ve and Hv02ve, which were previously identified for Venezuela, and three control isolates (Rz II, Rz XXXIII and Hv05) from Brazil. Isolates were collected in the states of Lara and Táchira.  After DNA extraction, RAPD was performed using twenty six primers of the OPA, OPB, OPC, OPD, OPE, OPF, OPG, OPH, OPK, OPL, OPM, OPN, OPO  and OPP series; and REMAP with five combinations LTR/ISSR (48F/D1C, 48R/D1C, 48R/T1C, 81F/D1C and 81F/T1C), using standard protocols. Statistical analysis was realized using the Infogen program. Results showed that 92.11% of RAPD and 96.55% of REMAP amplified bands were polymorphic and its information (PIC) varied from 0.15 to 0.32, which suggests a high genetic diversity among the Hv isolates. In addition, in both markers three groups were formed, discriminated by geographic distribution and altitude.

Downloads

Download data is not yet available.

References

Aime, M.C., A.R. McTaggart, S.J. Mondo y S. Duplessis. 2017. Phylogenetics and Phylogenomics of Rust Fungi. Advances in Genetic 100: 267-307.

Arteaga, L. y J. Reyes. 2017. Análisis de cuatro marcadores RAPD en 41 accesiones de aguacate (Persea sp.). Apunte de asignatura: Genética Molecular. Universidad Autónoma del estado de México. pp:1-16.

Avelino, J., M. Cristancho, S. Georgiou, P. Imbach, L. Aguilar, G. Bornemann et al. 2015. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Security 7:303-321.

Bigirimana, J., K. Njoroge, J.W. Muthomi, D. Gahakwa, E.K Gichuru y D.J. Walyaro. 2013. Genetic Diversity among Disease Resistant Coffee Varieties and Cultivars in Rwanda Based On RAPD and SSR Markers. Journal of Renewable Agriculture 1(6): 106-112.

Biswas M.K, M.N.R. Baig, Y.J. Cheng y X.X. Deng. 2010. Retro-transposon based genetic similarity within the genus Citrus and its relatives. Genetic Resource Crop Evolution 57(7): 963-972.

Borén A. y E. Teixera Caixeta. 2016. Marca-dores Moleculares. Ed. UFV. Viçosa, Brasil. p 9.

Bustamante, J., A. Sarmiento, A. Casanova, E. Contreras, C. Yanez, C. Romero et al. 2001. Caracterización de resistencia incompleta a Hemileia vastatrix en genotipos de café (Coffea arabica L) variedad Bramón I. Bioagro 13(2): 65-70.

Cabral, P.G.C., E. Maciel-Zambolim, S.A.S. Oliveira, E.T. Caixeta y L. Zambolim. 2016. Genetic diversity and structure of Hemileia vastatrix populations on Coffea spp. Plant Pathology 65: 196-204.

Capucho, A., E. Zambolim, R. Freitas, F. Haddad. E. Caixeta y L. Zambolim. 2012. Identification of race XXXIII of Hemileia vastatrix on Coffea arabica Catimor derivatives in Brazil. Australasian Plant Dis. Notes 7: 189-191.

Cristancho, M., D Botero-Rozo, W. Giraldo, J. Tabima, D, Riaño-Pachón† et al. 2014. Annotation of a hybrid partial genome of the coffee rust (Hemileia vastatrix) contributes to the gene repertoire catalog of the Pucciniales. Frontiers in Plant Science 5: 1-11.

Daba G, R. Daelemans, G. Berecha, M.W.J. Geerinck, C. Verreth, S. Crauwels et al. 2024. Genetic diversity and structure of the coffee leaf rust fungus Hemileia vastatrix across different coffee management systems in Ethiopia. International Microbiology 27(2): 525-534.

Gouveia, M., A. Ribeiro, V. Varzea, y C. Rodríguez. 2005. Genetic diversity in Hemileia vastatrix based on RAPD markers. Mycologia 97(2): 396-404.

Jennings, J., A.C. Newton y K.W. Buck. 1997. Detection of Polymorphism in Puccinia hordei using RFLP and RAPD Markers, Differential Cultivars and Analysis of the Intergenic Spacer Region of rDN A. Phytopathology 145: 511-519.

Kalendar R, A.J. Flavell, S.T, Ellis, C. Moisy, y A.H. Schulman. 2011. Analysis of plant diversit with retrotransposon-based molecular markers. Heredity 106: 520-530.

Kalendar R. y A.H Schulman. 2014. Transposon-based tagging: IRAP, REMAP, and iPBS. In Molecular Plant Taxonomy 1115: 233-255.

Legaria-Solano, J.P. 2010. Diversidad genética en algunas especies de amaranto (Amaranthus spp.). Fitotecnia México 33(2): 89-95.

Maia, T., E. Maciel-Zambolim, E. Caixeta, E. Mizubuti y L. Zambolim, 2013. The population structure of Hemileia vastatrix in Brazil inferred from AFLP. Australasian Plant Pathology 42(5): 533-542.

Maldonado, C. E., G. Marín-Ramírez, y C.A Ángel. 2022. Transposable elements library of the genome of Hemileia vastatrix (Race I), causative agent of the coffee leaf rust (data set). Biblioteca CENICAFE 10778/4392.

Nunes, C.C, L.A. Maffia, E.S.G., Mizubuti, S.H. Brommonschenkel y J.C. Silva. 2009. Genetic diversity of populations of Hemileia vastatrix from organic and conventional coffee plantations in Brazil. Australasian Plant Pathology 38: 445-45.

Orozco-Arias, S., M.S. Candamil, P.A. Jaimes, M. Cristancho, R. Tabares-Soto y R. Guyot. 2022. Composition and Diversity of LTR Retrotransposons in the Coffee Leaf Rust Genome (Hemileia vastatrix). Agronomy 12: 1-17.

Ramírez-Poletto, E., D. Rodríguez, L. Zambolim y E. Granados. 2024. Identificación fisiológica de cepas de Hemileia vastatrix en el estado Táchira, Venezuela. Bioagro 36(3): 277-286.

Riera, A. 2022. Afectación de las plantas de café por presencia del hongo de la roya. Recuperado de: https://n9.cl/pzurlp

Silva-Acuña, R., L. Zambolim y E. Pérez-Nieto. 1997. Identificación de razas fisiológicas de la roya del cafeto en el estado Táchira, Venezuela. Bioagro 9: 95-98.

Solano-Vidal, R. 2017. Situación actual de las razas fisiológicas de la roya (Hemileia vastatrix) del cafeto y un nuevo sistema de nomenclatura. Suplemento de la Revista Mexicana de Fitopatología 35: 28-31.

Varzea, V.M.P. y D.V. Marqués. 2005. Population variability of Hemileia vastatrix vs. coffee durable resistance. In: Zambolim, L.; E. Zambolim, V.M.P. Várzea, Durable resistance to coffee leaf rust. eds. UFV, Viçosa, MG, Brazil. pp. 53-74.

Zambolim, L. y E. Texeira. 2021. An overview of physiological specialization of coffee leaf rust-new designation of pathotypes. International Journal of Current Research 13(1): 15479-15490.

Zayat, M†, A. Hassan, E. Nishawy†, M. Ali y M. Hamdy Amar. 2021. Patterns of genetic structure and evidence of Egyptian Citrus rootstock based on informative SSR, LTR-IRAP and LTR-REMAP Molecular markers. Journal of Genetic Engineering and Biotechnology 19(1): 1-14.

Published

2025-09-01

How to Cite

Ramírez Poletto, E., Rodríguez, D., Hernández, A., Teixeira Caixeta, E., & Pires de Almeida, D. (2025). Molecular variability of Hemileia vastratix Berk. & Br. in two Venezuelan states based on RAPD and REMAP markers. Bioagro, 37(3), 325-338. https://doi.org/10.51372/bioagro373.7