Silicon to improve the quality of melon (Cucumis melo l.) and cucumber (Cucumis sativus l.) seedlings

Authors

DOI:

https://doi.org/10.51372/bioagro381.12

Keywords:

Greenness, growth, root biomass, seedling quality

Abstract

The addition of silicon (Si) represents a promising avenue to address agricultural challenges, providing enhancing effects on plant defense mechanisms, growth, photosynthesis, and fruit production. Therefore, the objective of this research was to understand the response of melon and cucumber to different doses of silicon on plant growth and seedling quality.  Seeds of the Harper melon variety Palmira F1 and the slicer cucumber variety Modan RZ F1 (22-951) were sown in 60-cell seedling trays filled with peat moss (Berger®), maintained inside a growth chamber with artificial lighting, with a light environment of 305,3 μmol m-2·s-1 of DFFF (photosynthetic photon flux density). A completely randomized experimental design was used, with five treatments: Si at doses of 0 (control), 1, 3, 5, and 7 mg·L-1 (Sodium metasilicate®, Na2SiO3.9H2O). Treatments were applied to tray-grown plants through irrigation. Response variables included plant height (PH), leaf area (LA), stem diameter (SD), leaf greenness (LGB), dry root biomass (DRB), dry aerial biomass (AAB), total biomass (TB) of seedlings, slenderness index (SI), shoot-to-root ratio (SRR/RPR), and Dickson quality index (DQI). Silicon in melon and cucumber seedlings improved growth and quality-related parameters (SRR, SBB, TB, and DQI), with a higher DQI level in seedlings treated with a dose of 1 mg L-1.

Downloads

Download data is not yet available.

References

Ahsan, M., M. Valipour, F. Nawaz, M. Raheel, H.T. Abbas, M. Sajid et al. 2023. Evaluation of silicon supplementation for drought stress under water-deficit conditions: an application of sustainable agriculture. Agronomy 13(2): 599.

Altieri, A. 1997. Agroecología, Base científica para la Agricultura Sustentable, Asociación cubana de Agricultura Orgánica (ACAO)-CLADES, Habana, Cuba. P. 325.

Asgari, F., A. Majd, P. Jonoubi y F. Najafi. 2018. Effects of silicon nanoparticles on molecular, chemical, structural and ultrastructural characteristics of oat (Avena sativa L.). Plant Physiology and Biochemistry 127(1):152-160.

Bhardwaj, S y D. Kapoor. 2021. Fascinating regulatory mechanism of silicon for alleviating drought stress in plants. Plant Physiology and Biochemistry 166: 1044-1053.

Biju, S., S. Fuentes y D. Gupta. 2023. Novel insights into the mechanism(s) of silicon-induced drought stress tolerance in lentil plants revealed by RNA sequencing analysis.BMC Plant Biology 23: 498.

Bist, V., A. Niranjan, M. Ranjan, A. Lehri, K. Seem y S. Srivastava. 2020. Silicon-solubilizing media and its implication for characterization of bacteria to mitigate biotic stress. Frontiers in Plant Science 11: 28.

Blanco, F.F y M.V. Folegatti. 2003. A new method for estimating the leaf area index of cucumber and tomato plants. Horticultura Brasileira 21(4):666-669.

Caicedo, L.M y W.M. Chavarriaga. 2008. Efecto de la aplicación de dosis de silicio sobre el desarrollo en almácigo de plántulas de café variedad Colombia. Agronomía Colombiana 15(1): 27-37.

Cázarez, F.L.Ll., R.L. Partida, A.T.D.J. Velázquez, T.N.D. Zazueta, J.M.D. Yáñez, C.A. Angulo et al. 2024. Respuesta de dos variedades de pepino (Cucumis sativus L.) al silicio y cloro aplicados en casa sombra. Terra Latinoamericana 42: e1620.

Chourasiya, V.K., A. Nehra, P.S. Shukla, K.P. Singh y P.S. Singh. 2021. Impact of Mesoporous Nano-Silica (SiO₂) on Seed Germination and Seedling Growth of Wheat, Pea and Mustard Seed. Nanosci. Nanotechnol. 21(6):3566-3572.

Coskun, D., R. Deshmukh, H. Sonah, J.G. Menzies, O. Reynolds, J.F. Ma et al. 2019. The controversies of silicon’s role in plant biology. New Phytologist 221(1):67-85.

De Mesquita, A.J., A.S. de Lima, F.R.A. Figueiredo, T.I. da Silva, C.L. Ferreira, M.F. de Oliveira et al. 2020. Fluorescencia de la clorofila ay desarrollo de plantas de calabacín bajo fertilización con nitrógeno y silicio Agronomía Colombiana 38(1): 45-52.

Dickson, A., A.L. Leaf y J.F. Hosner. 1960. Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle 36(1):10-13.

Enríquez, A.E.A., E.F.H. Ruiz, M.F.D.J. Carballo, M.F.A. Beltrán, V.C. Vázquez y S.H.D. García. 2023. El silicio como mitigador a salinidad en las variables fisiológicas de germinación de tres variedades de Solanum lycopersicum. Revista Mexicana de Ciencias Agrícolas 14(1): 85-96.

Enríquez, A.E.A., R.J.L. Ledea, M.F.de.J. Carballo, E.F.H. Ruiz y M.F.A. Beltrán. 2025. El silicio y su relación con la germinación y los índices relacionados en variedades de Solanum lycopersicum L. En condiciones de salinidad. Terra Latinoamericana 43.

González, T.A., V.U. Figueroa, R.P. Preciado, H.G. Núñez, O.G. Luna y G.O. Antuna. 2016. Uso eficiente y recuperación aparente de nitrógeno en maíz forrajero en suelos diferentes. Revista Mexicana de Ciencias Agrícolas 7(2): 301-309.

Haghighi, T.M., M.J. Saharkhiz, A. Ramezanian y M. Zarei. 2023. The use of silicon and mycorrhizal fungi to mitigate changes in licorice leaf micromorphology, chlorophyll fluorescence, and rutin content under water-deficit conditions. Plant Physiol. Bioch.197: 107662.

Hodson, M.J y D.E. Evans. 2020. Aluminum-silicon interactions in higher plants: an update. Journal of Experimental Botany 71(21): 6719-6729.

Kaloterakis, N., D.S.H. Van, S.E. Hartley y G.B. de Deyn. 2021. Silicon application and plant growth promoting rhizobacteria consisting of six pure Bacillus species alleviate salinity stress in cucumber (Cucumis sativus L). Scientia Horticulturae 288: 110383.

Kamenidou, S., T.J. Cavins y S.M. Marek. 2010. Silicon supplements affect the quality traits of floriculture and the elemental nutrient concentrations of greenhouse-grown gerberas. Scientia Horticulturae 123(3): 390-394.

Khan. I., S.A. Awan, M. Rizwan, M. Brestic y W. Xie. 2023. Silicon: an essential element for plant nutrition and phytohormones signaling mechanism under stressful conditions. Plant Growth Regul. 100(2): 301-319.

Llerena, R.L.T., R.S. Rodríguez, P.J.J. Reyes, Á.S. López, P.M. Jiménez y P.B. Espinosa. 2025. Microorganismos Benéficos y Compost Líquido Enriquecido con Silicio: Alternativas para la Producción Agroecológica del Cultivo de Arroz. Terra Latinoamericana 43: 1-15.

Loaiza, C. 2003. Fisiología vegetal. Ed. Universidad de Caldas, Manizales. pp. 8-15.

Malik, M.A., A.H. Wani, S.H. Mir, I.U. Rehman, I. Tahir, P. Ahmad et al. 2021. Elucidating the role of silicon in drought stress tolerance in plants. Plant Physiology and Biochemistry 165: 187-195.

Nayekova, S.K., K.M. Aubakirova, K.K. Aitlessov, V.V. Demidchik y Z.A. Alikulov. 2020. Impact of diatomite priming of seeds of hordeum vulgaris in salinity. EurAsian Journal of BioSciences 14(1): 705-712.

Nikolaos, K., H.V.D. Sander, H. Sue y B.D.D. Gerlinde. 2021. Silicon application and plant growth promoting rhizobacteria consisting of six pure Bacillus species alleviate salinity stress in cucumber (Cucumis sativus L). Scientia Horticulturae 288: 110383.

Pavlovic, J., L. Kostic, P. Bosnic, E.A. Kirkby y M. Nikolic. 2021. Interactions of silicon with essential and beneficial elements in plants. Frontiers in Plant Science 12: 697592.

Reyes, P.J.J., R.S. Rodríguez, R.J.A. Torres, R.L.T. Llerena, M.L.G. Hernández y E.F.H. Ruiz. 2023. Biofortificación con silicio en el crecimiento y rendimiento de pimiento (Capsicum annuum L.) en ambiente controlado. Terra Latinoamericana 41:1-10.

Schmidt, V.H. 1980. Characterization of plant material, IUFRO Meeting.S1.05-04. En Röhring E, Gussone HA.Waldbau.Zweiter band.Sechste Auflage, Neubearbeitet. Hamburgund, Berlin, 1990. 314 pp

Trejo, T.L.I., J.A. García, S.H.F. Escobar, O.S.M. Ramírez, B.J.J. Bello y M.F.C. Gómez. 2020. Silicon induces hormetic dose-response effects on growth and concentrations of chlorophylls, amino acids and sugars in pepper plants during the early developmental stage. PeerJ 8(14078): e9224.

Vinaykumar, R., K. Manish, N. Narender, C. Sohini, K. Monit, S. Sangram et al. 2024. Silicon derived benefits to combat biotic and abiotic stresses in fruit crops: Current research and future challenges. Plant Physiology and Biochemistry 211: 108680.

Wang, Z., Y. Wang, J. Lü, T. Li, S. Li, M. Nie et al. 2024. Silicon and selenium alleviate cadmium toxicity in Artemisia selengensis Turcz by regulating the plant-rhizosphere. Environmental Res. 252:119064.

Xu, T., J. Ke, Y. Wang, Y. Zhang, J. Xi, X. Wei et al. 2024. Silicon Fertilization Improves Sunflower Rhizosphere Microbial Community Structure and Reduces Parasitism by Orobanche cumana Wallr. Agronomy 14(6): 1312.

Yan, G., X. Fan, M. Peng, C. Yin, Z. Xiao y Y. Liang. 2020. Silicon improves rice salinity resistance by alle viating ionic toxicity and osmotic constraint in an organ-specific pattern. Frontiers in Plant Science 11: 260.

Zejun, G., L. Siyao, X. Chaoqun, W. Mingyue, S. Lingyu, H. Hezi et al. 2025. Silicon enhances potassium uptake and leaf growth in Avicennia marina, a silicon-accumulating mangrove plant with silicon transporters. Industrial Crops and Products 222: 120876.

Published

2026-01-01

How to Cite

Vega Gutiérrez, T. A., Yáñez Juárez, M. G., Tirado Ramírez, M. A., Cázarez Flores, L. L., Mendoza Gómez, A., & González Balcázar, A. (2026). Silicon to improve the quality of melon (Cucumis melo l.) and cucumber (Cucumis sativus l.) seedlings. Bioagro, 38(1), 533-542. https://doi.org/10.51372/bioagro381.12

Issue

Section

Nota Técnica