Áreas geográficas susceptibles a Fusarium oxysporum en el cultivo de fresa en Guanajuato, México

Autores/as

Palabras clave:

Idoneidad ambiental, MaxEnt, secadera de la fresa

Resumen

Fusarium oxysporum es el hongo más frecuente del complejo de especies que conforman la enfermedad conocida como secadera de la fresa. El objetivo del presente trabajo fue determinar la idoneidad ambiental que propicia la incidencia de este hongo. Se tomaron muestras en 174 unidades de producción de fresa en el estado de Guanajuato México, para determinar la presencia de F. oxysporum mediante caracterización morfológica de la planta. Con los casos positivos se evaluó la idoneidad ambiental con el algoritmo de máxima entropía (MaxEnt) utilizando 22 variables bioclimáticas como predictores. Se encontró que en una superficie de total de 174.580 ha, existen las condiciones climáticas para propiciar la incidencia de F. oxysporum. Las variables climáticas que principalmente propician esta incidencia son el cuatrimestre más cálido (31 %), el régimen de humedad (26 %) y la altitud de la zona (18 %).

Descargas

La descarga de datos todavía no está disponible.

Citas

1. Agrios, G.N. 2005. Plant pathology. 5th ed. University of Florida, FL, USA

2. Andreo, V., G. Glass, T. Shields, C. Provenzal y J. Polop. 2011. Modeling potential distribution of Oligoryzomys longicaudatus, the andes virus (Genus: Hantavirus) reservoir, in Argentina. EcoHealth 8(3): 332-348.

3. Ceja-Torres, L.F., G. Mora-Aguilera, D. Téliz, A. Mora-Aguilera, P. Sánchez-García, C. Muñoz-Ruíz y D. La Torre-Almaraz. 2008. Ocurrencia de hongos y etiología de la secadera de la fresa con diferentes sistemas de manejo agronómico. Agrociencia 42(4): 451-461.

4. CONABIO. 1998. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Uso de suelo y vegetación. Escala 1:1 000 000. Modificado de: Instituto Nacional de Estadística, Geografía e Informática (INEGI) - Instituto Nacional de Ecología (INE). 1996. Uso del suelo y vegetación, escala 1:1 000 000. México. http://www.conabio.gob.mx/informacion/metadata/gis/ (consulta de julio 12, 2020).

5. Cubillos, G. 2017. Frosty pod rot, disease that affects the cocoa (Theobroma cacao) crops in Colombia. Crop Protection 96:77-82.

6. Cruz-Cárdenas, G., J.L. Villaseñor, L.López-Mata, E. Martínez-Meyer y E. Ortiz. 2014. Selección de predictores ambientales para el modelado de la distribución de especies en Maxent. Revista Chapingo. Serie ciencias forestales y del ambiente 20(2): 187-201.

7. De los Santos B., C. Barrau, y F. Romero. 2003. Strawberry fungal diseases. Food, Agriculture and Environment 1: 129-132.

8. Escobar, L.E. y M.E. Craft. 2016. Advances and limitations of disease biogeography using ecological niche modeling Frontiers in Microbiology 7: 1174.

9. Guerrero-Chávez, G., M. Scampicchio y C. Andreotti. 2015. Influence of the site altitude on strawberry phenolic composition and quality. Scientia Horticulturae 192: 21-28.

10. Guisan, A. y N.E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135(3): 147-186.

11. López-Rocha, E., A.I. Mireles-Arriga, J. Hernández-Ruiz, J.E. Ruiz-Nieto y A. Rucoba-García. 2018. Áreas potenciales para el cultivo de girasol en condiciones de temporal en Guanajuato, México. Agronomía Mesoamericana 29(2): 305-314.

12. Maples, V.M. 1992. Regímenes de humedad del suelo en Hidrogeografía IV.6.2 Atlas Nacional de México. Vol. II. Escala 1:4000000. Instituto de Geografía, UNAM. México. https://www.conabio.gob.mx/ informa cion/metadata/gis/(consulta de julio 12, 2020).

13. Mariscal-Amaro, L.A., A. Rivera-Yerena, P.A. Dávalos-González y D. Ávila-Martínez. 2017. Situación actual de hongos asociados a la secadera de la fresa (Fragaria× ananassa Duch.) en Guanajuato, México. Agrociencia 51(6): 673-681.

14. Martínez, F., S. Castillo, E. Carmona y M. Avilés. 2010. Dissemination of Phytophthora cactorum, cause of crown rot in strawberry, in open and closed soilless growing systems and the potential for control using slow sand filtration. Scientia Horticulture 125:756-760.

15. Mateo, R.G., Á.M. Felicísimo y J. Muñoz. 2011. Modelos de distribución de especies: Una revisión sintética. Revista chilena de historia natural 84(2): 217-240.

16. Nelson, P.E., T.A. Toussoun, y W.F.O. Marasas. 1983. Fusarium Species: An Illustrated Manual for Identification. The Pennsylvania State University Press. University Park and London pp. 142-150.

17. Osorio-Almanza, L., O. Burbano-Figueroa, C.A.M. Arcila, B.A.M. Vásquez, F. Carrascal-Pérez y F.J. Romero. 2017. Distribución espacial del riesgo potencial de marchitamiento del aguacate causado por Phytophthora cinnamomi en la subregión de Montes de María, Colombia. Revista
Colombiana de Ciencias Hortícolas 11(2): 273-285.

18. Pearson, R.G. y T.P. Dawson. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12(5): 361-371.

19. Phillips, S.J., R.P. Anderson, M. Dudík, R.E. Schapire y M.E. Blair. 2017. Opening the black box: an open-source release of MaxEnt. Ecography 40: 887-893.

20. Pineda, D.E.S. y N.L.R. Torres. 2017. Diseño de un modelo de programación lineal para la planeación de producción en un cultivo de fresa, según factores costo/beneficio y capacidades productivas en un periodo temporal definido. Ingenierías USBMed 8(1): 7-11.

21. Rheeder, J.P. y W.F.O. Marasas, (1998). Fusarium species from plant debris associated with soils from maize production areas in the Transkei region of South Africa. Mycopathologia 143(2): 113-119.

22. Sangalang, A. E., D. Backhouse y L.W. Burgess. 1995. Survival and growth in culture of four Fusarium species in relation to occurrence in soils from hot climatic regions. Mycological Research, 99(5): 529-533.

23. Shabani, F., L. Kumar y A. Esmaeili. 2014. Future distributions of Fusarium oxysporum f. spp. in European, Middle Eastern and North African agricultural regions under climate change. Agriculture, Ecosystems & Environment 197: 96-105.

24. Shabani, F., L. Kumar y M. Ahmadi. 2016. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecology and Evolution 6(16): 5973-5986.

25. Shukla, P.K., G. Baradevanal, S. Rajan y T. Fatima. 2020. MaxEnt prediction for potential risk of mango wilt caused by Ceratocystis fimbriata Ellis and Halst under different climate change scenarios in India. Journal of Plant Pathology 5: 1-9.

26. SIAP. 2020. Servicio de Información Agroalimentaria y Pesquera. Resumen nacional por estado. http://infosiap.siap.gob.mx:8080/ agricola_ siap_gobmx/ResumenProducto.do (consulta de Nov 1, 2019).

27. Summerell, B.A., M.H. Laurence, E.C. Liew y J.F. Leslie. 2010. Biogeography and phylogeo-graphy of Fusarium: A review. Fungal Diversity 44(1): 3-13.

28. Summerell, B.A., J.F. Leslie, E.C. Liew, M.H. Laurence, S. Bullock, T. Petrovic y L.W. Burgess. 2011. Fusarium species associated with plants in Australia. Fungal Diversity 46(1): 1-27.

Publicado

2020-12-22

Cómo citar

Juárez-García, R. A., Sanzón-Gómez, D., Ramírez-Santoyo, L. F., Ruiz-Nieto, J. E., González-Castañeda, J., & Hernández-Ruíz, J. (2020). Áreas geográficas susceptibles a Fusarium oxysporum en el cultivo de fresa en Guanajuato, México. Bioagro, 33(1), 51-57. Recuperado a partir de https://revistas.uclave.org/index.php/bioagro/article/view/3022

Número

Sección

Artículos