Epiphytiology of charcoal rot caused by Macrophomina phaseolina in soybean fertilized with biol and biosol

Authors

  • Victoria E. Morales Universidad Centro-occidental Lisandro Alvarado, Decanato de Agronomía, Postgrado de Fitopatología, Barquisimeto, Venezuela.
  • Alexander Hernández Universidad Centro-occidental Lisandro Alvarado, Decanato de Agronomía, Postgrado de Fitopatología, Barquisimeto, Venezuela.

DOI:

https://doi.org/10.51372/bioagro332.3

Keywords:

Edaphic and foliar fertilization, Glycine max, plant pathology

Abstract

The pathogenic fungus Macrophomina phaseolina, which causes charcoal rot, attacks important plant species, and measures have been proposed for its control through the application of organic amendments. The objective of this research was to evaluate the effect of Biol and biosol organic fertilizers, by soil and foliar application in soybean ʽCigras 06 ʼ (Glycine max), on the epiphytiology of the disease. The test was established under water stress and high solar radiation conditions. A total of 15 treatments were applied that represented four types of fertilization management: conventional (urea+NPK), edaphic biosol, edaphic biol, and foliar biol. Soil fertilization with balanced biol and biosol was calculated according to the principles of cationic balance in soil solution. Foliar fertilization with corrected biol was made by pH neutralization. The results were analyzed by ANOVA and Tukey test. To define the behavior of the epiphytia, trend curves were constructed from the calculation of area under disease progress curve (AUDCP) based on accumulated mortality. Regression equations and risk coefficients were obtained in each treatment. A correlation matrix was built between standardized data by principal components analysis PCA. Charcoal rot followed an exponential model characteristic of monocyclic epiphytes. The disease critical period ranged from V4 to R1, where the bulk of mortality occurred reaching 75% in the control without fertilizers. The application of biosol with urea made it possible to counteract the effects of the pathogen at 66,75 %.

Downloads

Download data is not yet available.

References

Babu B.K., R. Saikia y D.K. Arora. 2010. Molecular characterization and diagnosis of Macrophomina phaseolina: a charcoal rot fungus. In: Gherbawy Y. y K. Voigt (eds.). Molecular Identification of Fungi. Springer. New York. pp. 179-193.

Balzarini M y J. Di Rienzo. 2013. InfoGen versión 2012. FCA, Universidad Nacional de Córdoba, Argentina. URL: http://www.info-gen.com.ar (consulta de mayo, 2019).

Bonanomi G., V. Antignani, C. Pane y F. Scala. 2007. Suppression of soilborne fungal diseases with organic amendments. Journal of Plant Pathology 89(3): 311-324.

Cadahía C. 2005. Fertirrigación. Cultivos hortícolas, frutales y ornamentales. Ediciones Mundi-Prensa. Madrid.

Cardona, R. 2006. Distribución vertical de esclerocios de Macrophomina phaseolina en un suelo infestado naturalmente en el estado Portuguesa. Rev. Fac. Agron. (LUZ) 23: 284-291.

Castellanos, G., C. Jara y G. Mosquera. 2015. Manejo del Hongo. Guía Práctica 5: Macrophomina phaseolina. Centro Internacional de Agricultura Tropical CIAT. Palmira, Colombia. 19 p.

Cervantes, D., J.S. Padilla, J. Simpson y N. Mayek. 2003. Osmotic potential effects on in vitro growth, morphology and pathogenicity of Macrophomina phaseolina. J. Phytopath. 151: 456-462.

Ciampitti, I. 2013. Soybean Growth and Development. Kansas State University, Research and Extension. Crop Production and Cropping Systems Specialist. https://www.bookstore.sre.ksu.edu/pubs/MF3339.pdf.

Copley, T.R., S. Bayen y S. Jabaji. 2017 Biochar amendment modifies expression of soybean and Rhizoctonia solani genes leading to increased severity of Rhizoctonia foliar blight. Frontiers in Plant Science 8: 221.

Dhingra O.D. y J.B. Sinclair. 1978. Biology and Pathology of Macrophomina phaseolina. Imprensa Universitária, Universidade Federal de Viçosa, Brasil. 166 p.

El-Baz S.M., E. Abbas y R. Abo. 2012. Effect of sowing dates and humic acid on productivity and infection with rot diseases of some soybean cultivars cultivated in new reclaimed soil. International Journal of Agricultural Research. 7: 345-357.

Escobar, J.L. 2015. Producción de abonos orgánicos y bioprotectores. Usos y aplicaciones. Centro de Investigación Agrícola Tropical (CIAT), Santa Cruz, Bolivia. pp. 18-20.

Farr, D.F. y A.Y. Rossman. 2021. Fungal Databases, U.S. National Fungus Collections, ARS, USDA. https://nt.ars-grin.gov/fungaldata bases/ (consulta de marzo, 2021)

Frenkel O, A.K. Jaiswal, Y. Elad, B. Lew, C. Kammann y E.R. Graber. 2017. The effect of biochar on plant diseases: what should we learn while designing biochar substrates?. Journal of Environmental Engineering and Landscape Management 25: 105-113.

Groenen, D. 2018. The effects of climate change on the pests and diseases of coffee crops in Mesoamerica. Journal of Climatology & Weather Forecasting 6: 239-243.

Hemmati, P., Z.S. Doustmorad, M. Bagher, H. Majid, G. Majid, D. Aria y A. Reza. 2018. Histopathology of charcoal rot disease (Macrophomina phaseolina) in resistant and susceptible cultivars of soybean. Rhizosphere 7: 27-34.

Hidangmayum A., P. Dwivedi, D. Katiyar y A. Hemantaranjan. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Plants 25(2): 313-326.

Huang W., H. Ji, G. Gheysen, J. Debode y T. Kyndt. 2015. Biochar‐amended potting medium reduces the susceptibility of rice to root‐knot nematode infections. BMC Plant Biology 15: 267.

Jaiswal A.K., Y. Elad, E.R. Graber y O. Frenkel. 2014. Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biology & Biochemistry 69: 110-118.

Jaiswal A.K, O. Frenkel, Y. Elad, B. Lew y E.R. Graber. 2015. Non‐monotonic influence of biochar dose on bean seedling growth and susceptibility to Rhizoctonia solani: the “Shifted Rmax‐Effect”. Plant and Soil 395: 125-140.

Jaiswal A.K., Y. Elad, E.R. Graber, E. Cytryn y O. Frenkel. 2018. Soil-borne disease suppression and plant growth promotion by biochar soil amendments and possible mode of action. Acta Hortic. 1207 (9): 69-76.

Kaur, S., G.S. Dhillon, S.K. Brar, G.E. Vallad, R. Chand y V.B. Chauhan. 2012. Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends. Critical Reviews in Mycrobioloy 38: 136-151.

Khan S.N. 2007. Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopathologia, 5: 111-118.

Kranz J. 1988. Measuring plant disease. In: J. Kranz J. y J. Rottem (eds.). Experimental Techniques in Plant Disease Epidemiology. Springer-Verlag, Berlin. pp. 35-50.

Lodha S., S.K. Sharma y R.K. Aggarwal. 2002. Inactivation of Macrophomina phaseolina propagules during composting and effect of compost on dry root rot severity and seed yield of clusterbean. European J. Plant Pathology 108: 253-261.

Manici, L.M., F. Caputo y C. Cerato. 1995. Temperature responses of isolates of Macrophomina phaseolina from different climate regions of sunflower production in Italy. Plant Disease 79: 834-838.

Mashooda B., S. Lokesh y T. Vasanth. 2005. Pathogenicity of Macrophomina phaseolina and Fusarium verticilloides in Okra. Integrative Biosciences 9(1): 37-40.

Mayek, N., C. López, M. González, R. García, J.A. Acosta, O. Martínez y J. Simpson. 2001. Variability of mexican isolates of Macrophomina phaseolina on bases of pathogenesis and AFLP genotype. Physiological and Molecular Plant Pathology 59: 257-264.

Mayek, N., R. García, C. López, J.A. Acosta y J. Simpson. 2002. Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress. Physiol. Mol. Plant Path. 60:185-195.

Mengistu A, J.R. Smith, J.D. Ray y N. Bellaloui. 2011. Seasonal Progress of Charcoal Rot and Its Impact on Soybean Productivity. Plant Dis. 95(9): 1159-1166.

Muñoz, R.M., S. Hernández y N. Mayek. 2005. Análisis patogénico y genético de Macrophomina phaseolina (Tassi) Goid. en diferentes hospedantes. Revista Mexicana de Fitopatología 23(1): 11-18.

Ndiaye M., A.J. Termorshuizen y A.H.C van Bruggen. 2010. Effects of compost amendment and the biocontrol agent Clonostachys rosea on the development of charcoal rot (Macrophomina phaseolina) on cowpea. Journal of Plant Pathology 92(1): 173-180.

Perez C., J. Arzeno, J. Huidobro, B. Grümberg, C. Conforto, S. Hilton et al. 2012. Long-term effect of tillage systems on soil microbiological, chemical and physical parameters and the incidence of charcoal rot by Macrophomina phaseolina (Tassi) Goid in soybean. Crop Protection 40: 73-82.

Roa M.V. y R. Rosas. 2013. La biosíntesis de las poliaminas en el hongo fitopatógeno Macrophomina phaseolina. Revista Mexicana de Fitopatología 31(1): 45-59.

Sankar P y R.C. Sharma. 2001. Management of charcoal rot of maize with Trichoderma viride. Indian Phytopath. 54(3): 390-391.

Simko I y H.P. Piepho. 2012. The area under the disease progress stairs: calculation, advantage and application. Phytopathology 102(4): 381-389.

Smits G.B. y R. Noguera. 1988. Ontogenia y morfogénesis de esclerocios y picnidios de Macrophomina phaseolina. Agronomía Tropical 38: 69-78.

Steiner C., W.G. Teixeira, J. Lehmann y W. Zech. 2004. Microbial response to charcoal amendments of highly weathered soils and amazonian dark earths in central Amazonia - preliminary results. In: B. Glaser y W.I. Woods (eds.). Amazonian Dark Earths: Explorations in Space and Time. Springer Verlag, Heidelberg. pp. 195-212.

Stewart, S y M. Rodríguez. 2013. Manual de identificación de enfermedades de la soja. Boletín de Divulgación N° 104. INIA. Ministerio de Ganadería, Agricultura y Pesca. Uruguay. 74 p.

Su, G., S.O. Suh, R.W. Schneider y J.S. Russin. 2001. Host specialization in the charcoal rot fungus Macrophomina phaseolina. Phytopathology 91: 120-126.

Thilagavathi R., D. Saravanakumar, N. Ragupathi y R. Samiyappan. 2007. A combination of biocontrol agents improves the management of dry root rot (Macrophomina phaseolina) in greengram. Phytopathol. Mediterr. 46: 157-167.

Torrealba, J.A., J. Pineda, D. Ulacio, H. Escalante y A. Hernández. 2015. La pudrición carbonosa (Macrophomina phaseolina) en soya y su manejo mediante aplicaciones de Trichoderma spp. y Rhizobium sp. Bioagro 27(3): 159-166.

Ulacio, D. 2013. Principios y conceptos epidemiológicos para el estudio de las enfermedades en las plantas. In: D. Ulacio (ed.). Manejo Integrado de las Enfermedades (Principios y Aplicaciones). San Felipe, Venezuela. pp. 147-171.

Vanderplank J. 1963. Plant Diseases: Epidemics and Control. Academic Press. New York.

Wrather J.A., J.G. Shannon, T.E. Carter, J.P. Bond, J.C. Rupe y A.M.R. Almeida. 2008. Reaction of drought-tolerant soybean genotypes to Macrophomina phaseolina. Plant Management Network. 5 p.

Yakhin O.I., A.A. Lubyanov, I.A. Yakhin y P.H. Brown. 2017. Biostimulants in plant science: a global perspective. Frontiers in Plant Science 7: 2049.

Yigit F. y M. Dikilitas. 2008. Effect of humic acid applications on the root-rot diseases caused by Fusarium spp. on tomato plants. Plant Pathology Journal 7(2): 179-182.

Published

2021-04-29

How to Cite

Morales, V. E., & Hernández, A. (2021). Epiphytiology of charcoal rot caused by Macrophomina phaseolina in soybean fertilized with biol and biosol. Bioagro, 33(2), 91-104. https://doi.org/10.51372/bioagro332.3

Issue

Section

Artículos