Respuestas de Digitaria commutata y Cenchrus ciliaris al estrés hídrico: reacciones antioxidativas, prolina y azúcares solubles
DOI:
https://doi.org/10.51372/bioagro333.3Palabras clave:
Carotenoides, enzimas antioxidantes, estrés hídrico, prolina, sólidos solublesResumen
Se investigó el impacto del estrés hídrico en la actividad de las enzimas antioxidantes, así como de prolina, azúcares solubles y carotenoides en plantas Digitaria commutata y Cenchrus ciliaris. Se utilizaron dos regímenes diferentes de riego durante un período de tres meses. El estrés hídrico disminuyó el contenido total de clorofila en las plantas, pero aumentó el contenido de carotenoides. Curiosamente, no se observó ningún cambio en el rendimiento cuántico del fotosistema PSII (Fv/Fm). El contenido de malondialdehído (MDA) aumentó en mayor medida en ambas especies. Se observe una actividad mejorada en todas las enzimas (peroxidasa, catalasa y superóxido dismutasa), excepto la catalasa en las raíces. Los contenidos de prolina y azúcares solubles aumentaron significativamente después de la exposición al estrés hídrico. No se encontraron diferencias claras entre ambas especies. Los resultados relacionan la tolerancia a la sequía de D. commutata y C. ciliaris con mejores capacidades del sistema antioxidante, así como también con la acumulación de los osmoprotectores prolina y azúcares solubles.
Descargas
Citas
Amari, T., I. Saidi, M. Taamali and C. Abdelly. 2017. Morphophysiological changes in Cenchrus ciliaris and Digitaria commutata subjected to water stress. International Journal of Plant Research 7(1): 12-20.
Armstrong, M.K. Jonscher and N.A. Reisdorph. 2007. Analysis of 25 underivatized amino acids in human plasma using ion-pairing reversed-phase liquid chromatography/time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 1: 2717-2726.
Arora, A, R.K. Sairam and G.C. Srivastava. 2002. Oxidative stress and antioxidative system in plants. Current Science 82: 1227-1238.
Asada, K. 1994. Production and action of active oxygen species in photosynthetic tissues In: C.H. Foyer and P.M. Mullineaux (eds.). Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press. Boca Raton, FL, USA. pp 77-104.
Balibrea, M.E., M. Parra, M.C. Bolarin and F. Perez-Alfocea. 1999. PEG-osmotic treatment in tomato seedlings induces salt-adaptation in adult plants. Australian Journal of Plant Physiology 26: 781-786.
Boorboori, M.R., W. Lin, W. Zhan and C. Fang. 2020. The role of silicon to increase arsenic tolerance in rice (Oryza sativa L.) seedlings by reinforcing anti-oxidative defense. Bioagro 32(3): 159-168.
Bian, S. and Y. Jiang. 2009. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky blue grass in response to drought stress and recovery. Scientia Horticulturae 120: 264-270.
Chaieb, M. and M. Boukhris. 1998. Flore succinte et illustrée des zones arides et sahariennes de Tunisie. l'Or du Temps. Information Systems Division, National Agricultural Library. Washington DC.
Choudhury, S., P. Panda, L. Sahoo and S.K. Panda, S.K. 2013. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal. Behav 8: e23681.
Delatorre-Herrera, J., I. Delfino, C. Salinas, H. Silva and L. Cardemil. 2010. Irrigation restriction effects on water use efficiency and osmotic adjustment in Aloe Vera plants (Aloe barbadensis Miller). Agricultural Water Management 97: 1564-1570.
Ejaz, S., S. Fahad, M.A. Anjum, A. Nawaz, S. Naz, S. Hussain and S. Ahmad. 2020. Role of osmolytes in the mechanisms of antioxidant defense of plants. Sustainable Agriculture Reviews 39: 95-117.
Demiral, T. and I. Türkan. 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 53: 247-257.
La, V.H., B.R. Lee, Md. T. Islam, S. H. Park, H. Jung, D.W. Bae and T.H. Kim. 2019. Characterization of salicylic acid-mediated modulation of the drought stress responses: Reactive oxygen species, proline, and redox state in Brassica napus. Environ. Exp. Bot. 157: 1-10.
Laxa, M., M. Liebthal, W. Telman, K. Chibani and J. Dietz. 2019. The role of the plant antioxidant system in drought tolerance. Antioxidants 8(4): 94.
Milvia, L.R. 2013. Antioxidant defenses in plants with attention to Prunus and Citrus spp. Antioxidants 2: 340-369.
Fang, Y., Y. Du, J. Wang, A. Wu, S. Qiao, B. Xu et al. 2017. Moderate drought stress affected root growth and grain yield in old, modern and newly released cultivars of winter wheat. Front. Plant Sci. 8: 672.
Fielding, J.L. and J.L. Hall. 1978. A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum. Journal of Experimental Botany 29: 979-986.
Filippou, P., P. Bouchagier, E. Skotti and V. Fotopoulos. 2014. Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environ. Exp. Bot. 97: 1-10.
Foyer, C.H. and G. Noctor. 2004. Oxygen processing in photosynthesis: regulation and signaling. New Phytologist 146: 359-388.
Gawel, S., M. Wardas, E. Niedworok and P. Wardas. 2004. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci Lekarskie (Warsaw, Poland: 1960) 57(9-10): 453-455.
Genty, B., J.M. Briantais and R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 99: 87-92.
Halliwell, B. and J.M.C. Gutteridge. 1999. Free Radicals in Biology and Medicine. Oxford Science Publications. New York.
Hazrati, S., Z. Tahmasebi-Sarvestani, A. Mokhtassi-Bidgoli, S.A.M., Modarres-Sanavy, H. Mohammadi and S. Nicola. 2017. Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L. Agricultural Water Management 181: 66-72.
Hodges, M.D. J.M. DeLong Forney F. R.K. Prange. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207: 604-611.
Hsiao, T.C. and A. Läuchli. 1986. A role of potassium in plant water relations. In: B. Tinker and A. Läuchli (eds.). Advances in Plant Nutrition 2. Praeger Scientific. New York, pp. 281-312.
Lichtenthaler, H.K. and A. Welburn. 1983. Determination of total carotenoids and chlorophylls a and b of leaf extract in different solvents. Biochemical Society Transactions 603: 591-2.
Luck, H. 1965. Catalase. In: H.U. Bergmeyer (ed.). Methods of Enzymatic Analysis. Academic Press. New York. pp.: 885-888.
Manivannan, P., C. AbdulJaleel, R. Somasundaram and R. Panneerselvam. 2008. Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. Comptes Rendus Biologies 331: 418-425.
Maxwell, K. and G.N. Johnson. 2000. chlorophyll fluorescence-a practical guide. Journal of Experimental Botany 51: 659-668.
Miller, G., N. Suzuki, S. Ciftci-Yilmaz and R. Mittler. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell & Environment 33: 453-467.
Miller, N.J., J. Sampson, L.P. Candeias, P.M. Bramley and C.A. Rice-Evans. 1996. Anti-oxidant activities of carotenes and xanthophylls. FEBS Letters 384: 240-242.
Moussa, H. and S.M. Abdel-Aziz. 2008. Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Australian Journal of Crop Science 1: 31-36.
Mozzo, M., L. Dall'Osto R. Hienerwadel, R. Bassi and R. Croce. 2008. Photoprotection in the antenna complexes of photosystem II: Role of individual xanthophylls in chlorophyll triplet quenching. Journal of Biological Chemistry 283: 6184-6192.
Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant and Cell Physiology 22: 867-880.
Nayyar, H. and D. Gupta. 2006. Differential sensitivity of C3 and D4 plants to water deficit stress: Association with oxidative stress and antioxidant. Environmental and Experimental Botany 58: 106-113.
Pirasteh-Anosheh, H., A. Saed-Moucheshi, H. Pakniyat and M. Pessarakli. 2016. Stomatal responses to drought stress. In: Water Stress and Crop Plants: A Sustainable Approach. Wiley Blackwell. Oxford, UK. Volume 1.
Scebba, F., L. Sebastiani and C. Vitagliano. 1999. Protective enzymes against activated oxygen species in wheat (Triticum aestivum L.) seedlings: Responses to cold acclimation. Journal of Plant Physiology 155: 762-768.
Silva, H., S. Sagardia, M. Ortiz, N. Franck, M. Opazo, M. Quiroz et al. 2014. Relationships between leaf anatomy, morphology, and water use efficiency in Aloe vera (L.) Burm f. as a function of water availability. Revista Chilena de Historia Natural 87: 1-10.
Singh, A.K. and R.S. Dubey. 1995. Changes in chlorophyll a and b contents and activities of photosystems I and II in rice seedlings induced by NaCl. Photosynthetica 31: 489-499.
Sturm, K., D. Koron and F. Stampar. 2003. The composition of fruit of different strawberry varieties depending on maturity stage. Food Chemistry 83: 417-422.
Yamazaki, J., A. Ohashi, Y. Hashimoto, E. Negishi, S. Kumagai, T. Kubo et al. 2003. Effects of high light and low temperature during harsh winter on needle photodamage of Abies mariesii growing at the forest limit on Mt. Norikura in Central Japan. Plant Science 165: 257-264.
Yin, H., Q. Chen and M. Yi. 2008. Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regulation 54: 45-54.
Zhang, L.X., J.H. Lai, Z.S. Liang and M. Ashraf. 2014. Interactive effects of sudden and gradual drought stress and foliar applied glycinebetaine on growth, water relations, osmolyte accumulation and antioxidant defense system in two maize cultivars differing in drought tolerance. Journal of Agronomy and Crop Science 200: 425-433.
Publicado
Cómo citar
Número
Sección
Está obra está bajo licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Derechos del/de autor/es a partir del año de publicación
Esta obra está bajo la licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación ni de la UCLA. Se autoriza la reproducción total o parcial de los textos aquí publicados, siempre y cuando se cite la fuente completa y la dirección electrónica de esta revista. Los autores(as) tienen el derecho de utilizar sus artículos para cualquier propósito siempre y cuando se realice sin fines de lucro. Los autores(as) pueden publicar en internet o cualquier otro medio la versión final aprobada de su trabajo, luego que esta ha sido publicada en esta revista.
Bioagro se reserva el derecho de realizar modificaciones textuales y ajustes técnicos a las figuras de los manuscritos, de acuerdo con el estilo y especificaciones de la revista.