Diversidad fenotípica y características bioquímicas de cepas de rhizobium nodulando al frijol (Phaseolus vulgaris L.)

Autores/as

  • Saoussen Kouki Laboratory of Agronomic Sciences and Technology, National Institute of Agronomic Research of Tunisia (INRAT). University of Carthage. Tunis, Tunisia.
  • Boulbaba L’taief Biology Department, College of Sciences, King Khalid University, P.O. Box 960, Abha, Saudi Arabia. https://orcid.org/0000-0001-6506-1048
  • Rahamh Al-Qthanin Biology Department, College of Sciences, King Khalid University, P.O. Box 960, Abha, Saudi Arabia.
  • Mustapha Rouissi Applied Biotechnology Laboratory, National Institute of Agronomic Research of Tunisia (INRAT). University of Carthage. Tunis, Tunisia.
  • Bouaziz Sifi Laboratory of Agronomic Sciences and Technology, National Institute of Agronomic Research of Tunisia (INRAT). University of Carthage. Tunis, Tunisia.

DOI:

https://doi.org/10.51372/bioagro341.2

Palabras clave:

Biodiversidad, Rhizobium, salinidad, temperatura

Resumen

El creciente interés en el uso de rizobios como biofertilizantes en sistemas agrícolas de pequeña escala ha llevado a investigar su diversidad, lo que ha resultado en la identificación de muchas cepas. En este studio se aislaron 55 cepas de Rhizobium que nodulaban en frijol común (Phaseolus vulgaris L.) en muestras de suelo de diferentes áreas de Túnez y se caracterizaron fenotípicamente para determinar su capacidad de fijación simbiótica de nitrógeno. Su tolerancia a la salinidad, pH, temperatura y alcalinidad, asì como las características culturales y bioquímicas indicaron una amplia diversidad fisiológica. Estas características fenotípicas afectaron significativamente el crecimiento de los rizobios, los cuales se identificaron y las cepas de interés se utilizaron en ensayos de inoculación. Estas cepas fueron eficientes y capaces de tolerar un pH de 4 a 9, concentraciones de NaCl de 25 mM a 100 mM, variaciones de temperatura entre 10 y 40 °C, y encalado (CaCO3) de 0,05 a 0,20 mM. Se identificaron cepas de Rhizobium como candidatas para la producción de biofertilizantes para una variedad de tipos de suelos tunecinos.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdi, N., B. L’taief, I. Hemissi, M. Bouraoui, H. Maazaoui and B. Sifi. 2014. Nitrogen and phosphorus fertilization effect on rhizobia-common bean symbiosis. Annales de l’INRAT 87: 21-33.

Aouni, M. E., R. Mhamdi, M. Mars and R. Ghrir. 1986. Modulation and growth of common bean under NaCl stress. Soil Biology and Biochemistry 301: 473-475.

Bargaz, A., M. Faghire, N. Abdi, M. Farissi, B. Sifi, J. J. Drevon, M. C. Ikbal and C. Ghaulam. 2012. Low soil phosphorus availability

increases acid phosphatases activities and affects partitioning in nodules, seeds and rhizosphere of Phaseolus vulgaris. Agriculture 2: 139-153.

Berrada, H., I. Nouijoui, M. I. Hassaini, N. El Ghachtali, M. Gtari and F. K. Ben Brahim. 2012. Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of multiple legume species native of Fez Morocco. African Journal of Microbiology Research 6(25): 5314-5324.

Cao, Y., E. T. Wang, L. Zhao, W. M. Chen and G. H. Wei. 2014. Diversity and distribution of rhizobia nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biology and Biochemistry 78: 128-137.

Chekani, V., R. Chikowo and B. Vanlauwe. 2018. Response of common bean (Phaseolus vulgaris L.) to nitrogen, phosphorus and rhizobia inoculation across variable soils in Zimbabwe. Agriculture, Ecosystems and Environment 266: 167-173.

De Lajudie, P., A. Willems, G. Nick, E. Moreira, F. Moulouba, B. Hoste et al. 1998. Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. International Journal of Systematic Bacteriology 48: 369-382.

Diange, E. A. and S. S. Lee. 2013. Rhizobium halotolerans sp. nov., isolated from Chloroethylene contaminated soil. Current Microbiology 66: 599-605.

El Attar, I., K. Taha, B. El Bekkay, M. El Khadir, T. I. Alami and J. Aurag. 2019. Screening of stress tolerant bacterial strains possessing interesting multiplant growth promoting traits isolated from root nodules of Phaseolus vulgaris L. Biocatalysis and Agricultural Biotechnology 20: 101-225.

El Sheikh, E.A. and M. Wood. 1989. Response of chickpea and soybean rhizobia to salt:influence of carbon source, temperature and pH. Soil Biology. Biochemistry 21: 883-887.

El Boutari, N. 2009. Etude phénotypique et génotypique d'une collection de Sinorhizobiummeliloti et de Rhizobium sullae. Université Mohammed VAgdal, Faculté des Sciences, Rabat. Retrieved from https://n9.cl/vea6w.

El‐Hamdaoui, A., R. N. Miguel, R. Rafael, B. Luis and Ildefonso B. 2003. Effects of boron and calcium nutrition on the establishment of the Rhizobium leguminosarum–pea (Pisum sativum) symbiosis and nodule development under salt stress. Plant Cell and Environment 26(7): 1003-1011.

Graham, J.H., T. R. Gottwald, J. Cubero and D. S. Achor. 2004. Xanthomonas axonopodis pv. citric: factors affecting successful eradication of citrus canker. Molecular Plant Pathology 5(1): 1-15.

Graham, P.H. 1992. Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Canadian Journal Microbiology 38: 475-484.

Graham, P.H. 1998. Symbiotic nitrogen fixation. In: D. Sylvia et al. (eds.). Principles and Applications of Soil Microbiology. Prentice Hall, UK. pp. 325-347.

Hungria, M. and A. A. Franco. 1993. Effect of high temperature on nodulation and nitrogen fixation by Phaseolus vulgaris L. Plant and Soil. 149: 95-102.

Hungria, M., M. A. Nogueiro and R. S. Araujo. 2015. Soybean Seed Co-Inoculation with Bradyrhizobium spp. and Azospirillum brasilense: A New Biotechnological Tool to Improve Yield and Sustainability. American Journal of Plant Sciences 6: 811-817.

Hungria, M., R. J. Campo and I. C. Mendes. 2003. Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biology and Fertility of Soils 39: 88-93.

Jebara, M., J. J. Drevon and M. E. Aouani. 2001. Effects of hydroponic culture system and NaCl on interactions between common bean lines and native rhizobia from Tunisian soils. Agronomie. 21: 601-605.

Jordan, D.C. 1984. Rhizobiaceae. In: Kreig, N. R. (ed.) Bergey’s Manual of Systematic Bacteriology 1: 234-256.

Karanja, N. K. and M. Wood. 1988. Selecting Rhizobium phaseoli strains for use with beans (Phaseolus vulgaris L.) in Kenya. Tolerance of high temperature and antibiotic resistance. Plant Soil 112: 15-22.

Karthik, C., M. Oves, K. Sathya, V. Sri Ramkumar and P. Arulselvi. 2017. Isolation and characterization of multi-potential Rhizobium strain ND2 and its plant growth-promoting activities under Cr (VI) stress. Arch. Agron. Soil Sci. 63: 1058-1069.

Kaymakanova, M., N. Stoeva and T. Mincheva. 2008. Salinity and its effect on physiological response of bean (Phaseolus vulgaris L.). Central European Agriculture 9(4): 749-756.

Kersters, K. and J. Deley. 1984. Genus III. Agrobacterium, Conn 1942. In: B. Holt et al. (eds.), Bergey’s Manual of Systematic Bacteriology. The Williams and Wilkins Co. Baltimore, MD, USA. pp. 224-225.

Koskey, G., W. M. Simon, J. Kimiti, O. Ombori, J. M. Maingi and E. Njeru. 2018. Genetic characterization and diversity of Rhizobium isolated from root nodules of mid-Altitude climbing bean (Phaseolus vulgaris L.) varieties. Frontiers of Microbiology 9: 918.

Kumar, P., P. Pandey, R. C. Dubey and D. K. Maheshwari. 2016. Bacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studies 2: 13-23.

Lindström, K. and S. Lehtomaèki. 1988. Metabolic properties, maximum growth temperature and phage sensitivity of Rhizobium sp. (Galega) compared with other fast-growing rhizobia. FEMS Microbiology Letters 50: 277-287.

Lipsanen, P. and K. Lindström. 1989. Lipopolysaccharide and protein patterns of Rhizobium sp. (Galega). FEMS Microbiology. Letters. 58: 323-328.

Maâtallah, J., E. B. Berraho, J. Sanjuan and C. Liuch. 2001. Phenotypic characterization of rhizobia isolated from chickpea (Cicer arietinum) growing in Moroccan soils. Agronomie 22: 321-329.

Meng, L., A. Zhang, F. Wang, X. Han, D. Wang and S. Li. 2015. Arbuscular mycorrhizal fungi and Rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front. Plant Sci. 6:339.

Moawad, H. and Beck D. 1991. Some characteristics of Rhizobium leguminosarium isolates from uninoculated filed-grown lentils. Soil. Biochemistry 23: 917-925.

Mohamed, S.H., A. Smouni, M. Neyra, D. Kharchaf and A. Filali-Matouf. 2000. Phenotypic characteristics of root-nodulating bacteria isolated from Acacia spp. grown in Libya. Plant et Soil. 224: 171-183.

Munevar, F. and A. G. Wollum. 1981. Effect of high root temperature and rhizobium strain on nodulation, nitrogen fixation, and growth of soybeans. Soil Science Society of America Journal 45: 1113-1120.

Musandu, A. A. O. and O. J. Ogendo. 2001. Response of Common Bean to Rhizobium Inoculation and Fertilizers. Journal of Food Technology in Africa 6: 121-125.

Mwenda, G. M., G. W. O’Hara, S. E. De Meyer, J. G. Howieson, and J. J. Terpolilli. 2018. Genetic diversity and symbiotic effectiveness of Phaseolus vulgaris nodulating rhizobia in Kenya. Systematic and Applied Microbiology 41: 291-299.

Parke, C. and L. N. Ornston. 1984. Nutritional diversity of Rhizobiaceae revealed by auxanography. Journal of General Microbiology 130: 1743-1750.

Raza, S., B. H. Jornsgard Abou-Taleb and J. L. Christiansen. 2001. Tolerance of Bradyrhizobium sp. (Lupini) strains to salinity, pH, CaCO3 and antibiotics. Letters in Applied Microbiology 32: 379-383.

Sherwood, J. E., G. L. Truchet and F. B. Dazzo. 1984. Effect of nitrate supply on the in vivo synthesis and distribution of trifoliin A, a Rhizobium trifolii-binding lectin, in Trifolium repens seedlings. Planta 126: 540-547.

Somasegaran, P. and H. J. Hoben. 1994. Handbook for Rhizobia: Methods in legume-Rhizobia technology. In Springer-Verlag. New York. 450 p.

Squartini, A., P. Struffi, H. Doring, S. Pobell, E. Tola, A. Giaconini, E. Vendramin, E.Velazquez, P.F. Mateos, E. Martinez Molina, F.B. Dazzo, S. Casella and M. Nuti. 2002. Rhizobium sullae sp. nov. (formerly ‘Rhizobium hedysari’), the root-nodule microsymbiont of

Hedysarum coronarium L. International Journal Systematic and Evolutionary Microbiology 52- 1267-1276.

Van Rossum, D., A. Muyotcha, B. M. De Hope, H. W. V. Verseveld, A. H. Stouthamer and F. C. Boogerd. 1994. Soil acidity in relation to groundnut-Bradyrhizobium symbiotic performance. Plant Soil. 163: 165-175.

Vincent, J.M. 1970. A manual for practical study of root nodule bacteria. IBP Handbook 15. Blackwell Scientific Publications, Oxford.

Voisin, A. S., C. Salon, C. Jeudy, and F. R. Warembourg. 2003. Root and Nodule Growth in Pisium sativum in relation to photosynthesis: Analysis using 13C-labeling. Annals of Botany 92: 557-563.

Xu, S. 1995. Further investigation on the regression method of mapping quantitative trait loci. Heredity 80: 364-373.

Yanni, Y., M. Zidan, F. Dazzo, R. Rizk, A. Mehesen, F. Abdelfattah and A. Elsadany. 2016. Enhanced symbiotic performance and productivity of drought-stressed common bean after inoculation with tolerant native rhizobia in extensive fields. Agriculture Ecosystems & Environment 232: 119-128.

Zablotowicz, R. M. and D. D. Focht. 1981. Physiological characteristics of cowpea rhizobia evaluation of symbiotic efficiency in Vigna unguiculata. Applied Environmental Microbiology 41: 679-685.

Zhang, F. and Smith D. L. 1996. Inoculation of soybean (Glycine max L. Merr.) with genistein-preincubated Bradyrhizobium japonicum or genistein directly into soil increases soybean protein and dry matter yield under short season conditions. Plant Soil 179: 233-241.

Publicado

2021-12-29

Cómo citar

Kouki, S., L’taief, B., Al-Qthanin, R., Rouissi, M., & Sifi, B. (2021). Diversidad fenotípica y características bioquímicas de cepas de rhizobium nodulando al frijol (Phaseolus vulgaris L.). Bioagro, 34(1), 15-26. https://doi.org/10.51372/bioagro341.2

Número

Sección

Artículos