Gas exchange and chlorophyll fluorescence in sugar beet leaves under water stress and ascorbic acid application

Authors

DOI:

https://doi.org/10.51372/bioagro343.11

Keywords:

Beta vulgaris, photosynthesis, stomatal conductance, transpiration

Abstract

Sugar beet (Beta vulgaris L.) is one of the most cultivated vegetables in Brazil, where water limitation is the main cause of yield loss. This limitation can be attenuated with the application of organic solutes, such as ascorbic acid (AA). The objective was to evaluate the response of sugar beet plants under the application of AA via irrigation water as a strategy to attenuate water deficit. The experiment was carried out at the Centro de Ciências Agrárias of the Universidade Federal da Paraíba, Areia, Brazil, using a randomized complete block design with nine combinations of irrigation depths based on five evapotranspiration percentages (40.0, 51.6, 80.0, 108.4 and 120 % ET) and five doses of AA (0, 0.29, 1.0, 1.71 and 2.0 mM), with three replications, generated from a central composite matrix. Water use efficiency (WUE) and chlorophyll fluorescence index were evaluated. Data were submitted to analysis of variance and, when significant, to a regression analysis. Irrigation depths influenced chlorophyll a, b and total, maximum fluorescence, instantaneous WUE and intrinsic WUE, but no effect was observed for AA. The beet cultivar Maravilha Top Tall Early Wonder exhibits certain physiological mechanisms of tolerance to water stress. The ascorbic acid, in the concentrations and application method used in the study, had no effect on the beet plant response.

Downloads

Download data is not yet available.

References

Acosta-Motos, J. R., M. F. Ortuño, A. Bernal-Vicente, P. Diaz-Vivancos, M. J. Sanchez-Blanco and J. A. Hernández. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy 7: 1-37.

Athar, H., A. Khan and M. Ashraf. 2008. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and Experimental Botany 63: 224-231.

Bernardo, S., A.A. Soares and E.C. Mantovani. 2008. Manual de irrigação. La Universidad Federal de Viçosa (UFV). Viçosa, Brasil.

Cardoso, N.D.S.N., L.M. Oliveira, L.G. Fernandez, C.R. Pelacani, C.L.M. de Souza and A.R. Oliveira. 2012. Osmo-condicionamento na germinação de sementes, crescimento inicial e conteúdo de pigmentos de Myracrodruon urundeuva fr. Allemão. Rev. Bras. de Biociências. 10: 457-461.

Celi-Soto, A., M.S. Mejía y L. Ríos-Rojas. 2022. Gas exchange and fluorescence in ‘sutil’lime’ (Citrus aurantifolia Swingle) under different soil moisture levels. Bioagro 34(2): 195-206.

El-Bially, M., H. Saudy, I. El-Metwally, M. Shahin. 2018. Efficacy of ascorbic acid as a cofactor for alleviating water deficit impacts and enhancing sunflower yield and irrigation water–use efficiency. Agricultural Water Management 208: 132-139.

Fabeiro, C., F. M. Santa Olalla, R. López and A. Domínguez. 2003. Production and quality of the sugar beet (Beta vulgaris L.) cultivated under controlled deficit irrigation conditions in a semi-arid climate. Agricult. Water Management 62: 215-227.

Gallie, D. R. 2012. The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. Journal of Experimental Botany 64: 433-443.

Hu, L., Z. Wang and B. Huang. 2010. Diffusion limitation sand metabolic factors associated within hibitionand recovery of photosynthesis from drought stress in a C3 perennial grass species. Physiology Plantarum 139: 93-106.

Jadoski, C.J., J.D. Rodrigues, R. P. Soratto, C. M. Santos and E. Ribeiro. 2015. Ação fisiológica da piraclostrobina na assimilação de CO2 e enzimas antioxidantes em plantas de feijão condicionado em diferentes tensões de água no solo. Irriga 20: 319-333.

Malmir, M., R. Mohammadian, A. Sorooshzadeh, A. Mokhtassibidgoli and S. Ehsanfar. 2020. The response of the sugar beet (Beta vulgaris L. ssp. vulgaris var. Altissima Döll) genotypes to heat stress in initial growth stage. Acta Agricult. Slovenica 115: 39-52.

Marengo, J.A., A.P.M.A. Cunha, C.A. Nobre, G.G. Ribeiro Neto, A. R. Magalhães, R.R. Torres et al. 2020. Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C. Natural Hazards 103: 2589-2611.

Mateus NB., D. Barbin and A. Conagin. 2001. Viabilidade de uso do delineamento composto central. Acta Sci. Agron. 23: 1537-1546.

Melo-Filho, J.S.D., T.I.D. Silva, A.C.D. Melo-Gonçalves, L. Vieira de Sousa, M.L. Martins-Véras and T.J. Dias. 2019. Salt water and silicon application on growth, chloroplastid pigments, chlorophyll fluorescence and beet production. Revista Colombiana de Ciencias Hortícolas 13(3): 406-415.

Mendes, B.S.S., L. Willadino, P. C. Cunha, R. A. Oliveira Filho and T. R. Camara. 2011. Mecanismos fisiológicos e bioquímicos do abacaxi ornamental sob estresse salino. Rev. Caatinga 24: 71-77.

Sairam, R.K., D. Kumutha, K. Ezhilmathi, K., P.S. Deshmukh and G.S. Srivastava. 2008. Physiology and biochemistry of waterlogging tolerance in plants. Biol. Plant 52: 401

Sharma, D.K., S.B. Andersen, C.O. Ottosen and E. Rosenqvist. 2015. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum 153: 284-298.

Silva, F.G., W.F. Dutra, A.F. Dutra, I.M. Oliveira, L. Filgueiras, A.S. Melo. 2015. Trocas gasosas e fluorescência da clorofila em plantas de berinjela sob lâminas de irrigação. Rev. Bras. de Eng. Agríc. e Ambiental. 19: 946-952.

Silva, M.D.A., C.M.D. Santos, H. D. S. Vitorino and A. F. D. L. Rhein. 2014. Pigmentos fotossintéticos e índice SPAD como descritores de intensidade do estresse por deficiência hídrica em cana-de-açúcar. Bioscience J. 30: 173-181.

Soares, F.C., A.D. Robaina, M.X. Peiter, J.L. Russi and G.A. Vivan. 2014. Redes neurais artificiais na estimativa da retenção de água do solo. Ciênc. Rural. 44: 293-300.

Sun, M., Z. Huo, Y. Zheng, X. Dai, S. Feng and X. Mao. 2018. Quantifying long-term responses of crop yield and nitrate leaching in an intensive farmland using agro-eco-environmental model. Sci. Total Environ. 613: 1003-1012

Tatagiba, S.D., G.A.B.K. Moraes, K.J.T. Nascimento and A.F. Peloso. 2014. Limitações fotossintéticas em folhas de plantas de tomateiro submetidas a crescentes concentrações salinas. Rev. Eng. na Agricult. 22: 138-149.

Topak, R., S. Süheri and B. Acar. 2011. Effect of different drip irrigation regimes on sugar beet (Beta vulgaris L.) yield, quality and water use efficiency in Middle Anatolian, Turkey. Irrigation Science 29: 79-89.

Velarde, M.R. 2010. Water management in sugar beet. Sugar Tech. 12: 299-304.

Viciedo, D.O., R. de M. Prado, R.L. Toledo, L.C.N. Santos, A.C. Hurtado, L.L. Nedd and L.C. Gonzalez. 2019. Silicon Supplementation alleviates ammonium toxicity in sugar beet (Beta vulgaris L.). Journal of Soil Science Plant Nutrition 19: 413-419.

Yolcu, S., H. Alavilli, P. Ganesh, M. Asif, M. Kumar and K. Song. 2022. An insight into the abiotic stress responses of cultivated beets (Beta vulgaris L.). Plants 11: 12.

Zhou, R., X. Yu, K. H. Kjaer, E. Rosenqvist, C. O. Ottosen and Z. Wu. 2015. Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environmental and Experimental Botany 118: 1-11.

Published

2022-08-31

How to Cite

de Melo Gonçalves, A., de Melo Filho, J., Fernandes de Oliveira Sousa, V., Iarley da Silva, T., Jardelino Dias, T., das Graças Souza, A., & Gomes de Moura, J. (2022). Gas exchange and chlorophyll fluorescence in sugar beet leaves under water stress and ascorbic acid application. Bioagro, 34(3), 319-326. https://doi.org/10.51372/bioagro343.11