Geographic areas susceptible to Tomato brown rugose fruit virus (ToBRFV) in Guanajuato, Mexico

Authors

DOI:

https://doi.org/10.51372/bioagro351.2

Keywords:

Environmental suitability, maximum entropy, Solanaceae, Tobamovirus

Abstract

Tomato Brown Rugose Fruit Virus (ToBRFV) is transmitted mainly by contaminated seed or plant-to-plant infection during the crop; however, local climatic conditions can enhance the incidence and severity of the virus. The objective of this research was to determine the environmental suitability of the ToBRFV in Guanajuato State, Mexico. Vegetative material was collected with characteristic symptoms of ToBRFV to extract RNA by RT-PCR to amplify a segment of ORF2 of the genome of this virus. A database was created with the geographic location of the positive cases; then the maximum entropy algorithm was applied with 22 bioclimatic variables as predictors. On a surface of 288,104 ha located in Guanajuato (equivalent to 9.4 % of the State's surface area), there are climatic conditions conducive to the incidence and severity of ToBRFV. The climatic variables that favor this incidence are: precipitation of the warmest four-month period (27.7 %), humidity regime (26.4 %) and average minimum temperature of the coldest year (17.0 %).

Downloads

Download data is not yet available.

References

Adams, M., J. Antoniw y J. Kreuze. 2009 Virgaviridae: a new family of rod-shaped plant viruses. Archives of Virology 154: 1967-1972.

Andreo, V., G. Glass, T. Shields, C. Provensal y J. Polop. 2011. Modeling potential distribution of Oligoryzomys longicaudatus, the andes virus (Genus: Hantavirus) reservoir, in Argentina. EcoHealth 8(3): 332-348.

Cambrón-Crisantos, M., J. Mendoza, J. Valencia, S. Rangel, A. López y L. Ochoa. 2018. First report of Tomato brown rugose fruit virus (ToBRFV) in Michoacán, Mexico. Mex. J. Phytopathol. 37: 185-192.

Caruso, A.G., S. Bertacca, G. Parrella, R. Rizzo, S. Davino y S. Panno. 2022. Tomato brown rugose fruit virus: A pathogen that is changing the tomato production worldwide. Annals of Applied Biology 181: 258-274.

CONABIO. 1998. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Uso de suelo y vegetación. Del Instituto Nacional de Estadística, Geografía e Informática (INEGI) e Instituto Nacional de Ecología (INE). México. https://n9.cl/gc5y4 (consulta de agosto 2020).

Dombrovsky, A y E. Smith. 2017. Seed Transmission of Tobamoviruses: Aspects of Global Disease Distribution. pp: 234-260. In: Jose C. Jiménez-López (ed.). Seed Biology. IntechOpen. 338 p.

Galdino, T.V.D.S, S. Kumar, L.S. Oliveira, A.C. Alfenas, L.G. Neven, A.M. Al-Sadi y M.C. Picanco. 2016. Mapping global potential risk of mango sudden decline disease caused by Ceratocystis fimbriata. PLoS One 11(7): e0159450.

Hanson, P., S.F. Lu, J. Wang, W. Chen, L. Kenyon, C.W. Tan y D. Ledesma. 2016. Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Scientia Horticulturae 201: 346-354.

Hanssen, I.M., R. Mumford, D.R. Blystad, I. Cortez, B. Hasiów-Jaroszewska, D. Hristova y M. Ravnikar. 2010. Seed transmission of Pepino mosaic virus in tomato. European Journal of Plant Pathology 126(2): 145.

INEGI (Instituto Nacional de Estadística y Geografía). 2014. Conjunto de Datos Vectorial Edafológico. Serie II. Aguascalientes, México. https://n9.cl/32yj3 (consulta de septiembre 2022).

Juárez-García, R.A., D. Sanzón-Gómez, L.F. Ramírez-Santoyo, J.E. Ruiz-Nieto y J. Hernández-Ruíz. 2021. Áreas geográficas susceptibles a Fusarium oxysporum en el cultivo de fresa en Guanajuato, México. Bioagro 33(1): 51-58.

Kumar, S., J. Graham, A.M. West y P.H. Evangelista. 2014. Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Computers and Electronics in Agriculture 103: 55-62.

Luria, N., E. Smith, V. Reingold, I. Bekelman, M. Lapidot, I. Levin y N. Ezra. 2017. A new Israeli Tobamovirus isolate infects tomato plants harboring Tm‐22 resistance genes. PLoS ONE 12: 429.

Maples, V.M. 1992. Regímenes de humedad del suelo en hidrogeografía IV.6.2 Atlas Nacional de México. Vol. II. Instituto de Geografía, UNAM. México. https://n9.cl/h5siq (consulta de agosto 2022).

Mateo, R.G., A.M. Felicísimo y J. Muñoz. 2011. Modelos de distribución de especies: Una revisión sintética. Revista Chilena de Historia Natural 84: 217-240.

Matouq, M., T. El-Hasan, H. Al-Bilbisi, M. Abdelhadi, M. Hindiyeh, S. Eslamian y S. Duheisat. 2013. The climate change implication on Jordan: A case study using GIS and Artificial Neural Networks for weather forecasting. Journal of Taibah University for Science 7(2): 44-55.

Panno, S., A.G. Caruso, G. Blanco y S. Davino. 2020. First report of Tomato brown rugose fruit virus infecting sweet pepper in Italy. New Plant Disease Report 41: 20.

Phillips, S.J., R.P. Anderson, M. Dudík, R.E. Schapire y M.E. Blair. 2017. Opening the black box: an open-source release of MaxEnt. Ecography 40: 887-893.

Ramos, R.S., L. Kumar, F. Shabani y M.C. Picanço. 2019. Risk of spread of Tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios. Agricultural Systems 173: 524-535.

Salem, N., A. Mansour, M. Ciuffo, B.W. Falk y M. Turina. 2016. A new Tobamovirus infecting tomato crops in Jordan. Archives of Virology 161(2): 503-506.

SENASICA (Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria). 2018. Protocolo de Diagnóstico: Tomato brown rugose fruit virus (ToBRFV) (Virus del fruto marrón rugoso del jitomate). Tecámac, México. https://n9.cl/8zrdf (consulta de agosto 2020).

SIAP. (Servicio de Información Agro-alimentaria y Pesquera). 2020. Anuario Estadístico de la Producción Agrícola 2017 en México. El cultivo de jamaica. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. México, D.F. http:// www.siap.gob.mx/ (consulta de agosto 2020).

Trebicki, P y K. Finlay. 2019. Pests and diseases under climate change; its threat to food security. Wiley, N.Y. pp. 229-249.

Trebicki, P. 2020. Climate change and plant virus epidemiology. Virus Research 286: 198059.

Wang, X.Y., X.L. Huang, L.Y. Jiang y G.X. Qiao. 2010. Predicting potential distribution of chestnut phylloxerid (Hemiptera: Phylloxeridae) based on GARP and Maxent ecological niche models. Journal of Applied Entomology 134(1): 45-54.

Zhang, S., Griffiths, J. S., Marchand, G., Bernards, M. A., Wang, A. 2022. Tomato brown rugose fruit virus: An emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide. Molecular Plant Pathology 23: 1262-1277.

Zinger, A., Lapidot, M., Harel, A., Doron-Faigenboim, A., Gelbart, D., Levin, I. 2021. Identification and mapping of tomato genome loci controlling tolerance and resistance to Tomato brown rugose fruit virus. Plants 10(179): 1-16.

Published

2022-12-31

How to Cite

Nolasco-García, L. I., Marín-León, J. L., Mireles-Arriaga, A. I., Ruiz-Nieto, J. E., & Hernández-Ruíz, J. (2022). Geographic areas susceptible to Tomato brown rugose fruit virus (ToBRFV) in Guanajuato, Mexico. Bioagro, 35(1), 13-20. https://doi.org/10.51372/bioagro351.2

Issue

Section

Artículos