Absorción de cadmio y micorrización en clones de cacao bajo agroforestería y monocultivo en la Amazonía peruana
DOI:
https://doi.org/10.51372/bioagro353.7Palabras clave:
Amazonía peruana, colonización micorrícica, micelio, Theobroma cacaoResumen
El sistema de producción influye en el contenido de cadmio (Cd) y la micorrización en las plantaciones de cacao. El objetivo de este estudio fue determinar los efectos de diferentes sistemas de producción en la absorción de Cd y la presencia de micorrizas en clones de cacao, en condiciones de campo, en la Amazonía peruana. Se seleccionaron doce subparcelas de 108 m2 en sistemas representativos de cultivo de cacao bajo agroforestería (AF) y monocultivo (MON), con los clones de cacao ICS y CCN. Se evaluaron las diferencias significativas y la distribución de datos mediante ANOVA, análisis de componentes principales, y la prueba de Tukey. La colonización micorrícica fue mayor en el sistema AF_ICS (71.11 %) mientras que la longitud del micelio extrarradical fue mayor en el sistema AF_CCN (17.23 %). El mayor contenido de Cd en suelos se encontró bajo los sistemas AF_CCN y AF_ICS, ambos con 0.39 mg kg-1. Los contenidos de Cd en las raíces, hojas, y granos de cacao fueron mayores en el sistema MON_CCN, con 1.87, 2.06, y 1.12 mg kg-1, respectivamente. Los monocultivos de cacao (con ambos clones) mostraron en general menores niveles de colonización micorrícica que los sistemas agroforestales, que a su vez (también para ambos clones) presentaron mayor contenido de Cd en el grano, superando incluso el límite establecido por las autoridades sanitarias mundiales.
Descargas
Citas
Alloway, B.J. 2013. Sources of Heavy Metals and Metalloids in Soils. Heavy Metals in Soils. Dordrecht. 22: 11-50.
Arévalo-Gardini, E., C.O. Arévalo-Hernández., V.C. Baligar and Z.L. He. 2017. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Sci. Total Environ. 605-606: 792-800.
Argüello, D., E. Chávez, F. Lauryssen, R. Vanderschueren, E. Smolders and D. Montalvo. 2019. Propiedades del suelo y factores agronómicos que afectan las concentraciones de cadmio en los granos de cacao: una encuesta nacional en Ecuador. Sci. Medio Ambiente Total. 649: 120-127.
Bali, A.S., GP. Sidhu and V. Kumar. 2020. Root exudates ameliorate cadmium tolerance in plants: A review. Environ. Chem. Lett. 18: 1243-1275.
Brundrett, M.C. and L. Tedersoo. 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220(4): 1108-1115.
Chávez, E., Z.I. He., P.J. Stoffella, R.S. Mylavarapu., Y.C. Li., B. Moyano and V.C. Baliga. 2015. Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment 533: 205–214.
Chávez-Salazar, A., A. Cueva-Benavides., V. Muñoz-Delgado., K. Documet-Petrlik and P. Vidaurre-Rojas. 2022. Beneficio del cacao clones CCN-51, ICS-39 y cacao Nativo (Theobroma cacao L.). Revista Agrotecnológica Amazónica, 2(1): e255-e255.
EPA, U.S. 1996. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils", Revision 2. Washington, DC.
Engbersen, N., A. Gramlich, M. Lopez, G. Schwarz, B. Hattendorf, O. Gutierrez and R. Schulin. 2019. Acumulación y asignación de cadmio en diferentes cultivares de cacao. Sci. Medio Ambiente Total 678: 660-670.
European Commission. 2014. Reglamento No 488/2014 de la comisión de 12 de mayo de 2014. Diario Oficial de La Unión Europea. https://eur-lex.europa.eu/legal-content/es/txt/pdf (retrieved June 2023)
Fan K.C., H.C. Hsi, C.W. Chen, H.L. Lee and Z.Y. Hseu. 2011. Cadmium accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings for phytoextraction applications. J. Environ. Manag. 92: 2818-2822.
Furcal-Beriguete, P. and J.L. Torres-Morales. 2020. Determinación de concentraciones de cadmio en plantaciones de Theobroma cacao L. en Costa Rica. Tecnología en Marcha, 33(1): 122-137.
Gai, J.P., J.Q. Fan, S.B. Zhang, NN. Mi., P. Christi, XL. Li and G. Feng. 2018. Direct effects of soil cadmium on the growth and activity of arbuscular mycorrhizal fungi. Rhizosphere 7: 43-48.
Gramlich, A., S. Tandy, C. Andres, J. Chincheros-Paniagua, L. Armengot, M. Schneider and R. Schulin. 2017. Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of The Total Environment, 580: 677-686.
Gramlich, A., S. Tandy, C. Gauggel, M. López, D. Perla, V. Gonzalez and R. Schulin. 2018. Soil cadmium uptake by cocoa in Honduras. Sci. Total Environ. 612: 370-378.
He, S., Z. He, X. Yang, P.J. Stoffella and V.C. Baligar. 2015. Soil Biogeochemistry, Plant Physiology, and Phytoremediation of Cadmium-Contaminated Soils 134: 135-225.
Hildebrandt, U., M. Regvar, and H. Bothe. 2007. Arbuscular mycorrhiza and heavy metal tolerance, Phytochemistry 68(1): 139-146.
Iglesias, L., E. Salas, H.A. Leblanc and P. Nygren. 2011. Response of Theobroma cacao and Inga edulis seedlings to cross-inoculated populations of arbuscular mycorrhizal fungi. Agroforest Syst. 83: 63.
Jiang, Q.Y., F. Zhuo, S.H. Long, H.D. Zhao, D.J. Yang, Z.H. Ye et al. 2016. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?. Sci. Rep. 6: 21805.
Kaur, B., B. Singh., N. Kaur, et al. 2018. Fitorremediación de suelos contaminados con cadmio a través de especies arbóreas multipropósito. Sistema Agroforestal 92: 473-483.
Lekberg, Y. and T. Helgason 2018. In situ mycorrhizal function–knowledge gaps and future directions. New Phytologist 220(4): 957-962.
Maddela, N.R., L.C. García, S. Chakraborty, K. Venkateswarlu and M. Megharaj. 2020. Cocoa-laden cadmium threatens human health and cacao economy: A critical view. Science of the Total Environment 720: 137645.
Mendoza-López, K.L., J. Mostacero-León, S.E. López-Medina, A.E. Gil-Rivero, A. Cruz-Castillo and L. Villena-Zapata. 2021. Cadmio en plantaciones de Theobroma cacao L. "cacao" en la región San Martín (Lamas), Perú. Manglar 18(2): 169-173.
Meylan, L., C. Gary, C. Allinne, J. Ortiz, L. Jackson and B. Rapidel. 2017. Evaluating the effect of shade trees on provision of ecosystem services in intensively managed coffee plantations. Agriculture, Ecosystems & Environment 245: 32-42.
MINAM (Ministerio del Ambiente). 2014. Guía para muestreo de suelos. https://n9.cl/ihjkn (retrieved June 2023).
Newman, E.I. 1966. A Method of estimating the total length of root in a sample. Journal of Applied Ecology 3(1): 139-145.
Oksanen, J., G.L. Simpson, F.G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, et al. 2022. Vegan: Community Ecology Package. R package version 2.6-2. https://CRAN.R-project.org/package=vegan
Oliva, M., K. Rubio, M. Epquin, G. Marlo and S. Leiva. 2020. Cadmium uptake in native cacao trees in agricultural lands of Bagua, Peru. Agronomy 10(10): 1551.
Phillips, J.M. and D.S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55(1): 158-161.
Ramtahal, G., P. Umaharan, A. Hanuman, C. Davis and L. Ali. 2019. The effectiveness of soil amendments, biochar and lime, in mitigating cadmium bioaccumulation in Theobroma cacao L. Science of The Total Environment 693(25): 133563.
Ramtahal, G., I. Yen, I. Bekele, F. Bekele, L. Wilson, K. Maharaj, and L. Harrynanan. 2016. Relationships between cadmium in tissues of cacao trees and soils in plantations of Trinidad and Tobago. Food and Nutrition Sciences 7: 37-43.
Ramtahal, G., I. Chang, N. Ahmad, I. Bekele, F. Bekele, K. Maharaj, E. Lawrence and L. Harrynanan. 2015. Prediction of soil cadmium bioavailability to cacao (Theobroma cacao L.) using Single-Step Extraction Procedures. Communications in Soil Science and Plant Analysis 46(20): 2585-2594.
Rask, K.A., J.L. Johansen, R. Kjoller, and F. Ekelund. 2019. Differences in arbuscular mycorrhizal colonization influence cadmium uptake in plants, Environmental and Experimental Botany 162: 223-229.
Raza, A., M. Habib, S.N. Kakavand., Z. Zahid., N. Zahra., R. Sharif and M. Hasanuzzaman. 2020. Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms. Biology 9(7): 177.
Sandoval-Pineda, J.F., U.A. Pérez-Moncada, A. Rodriguez and E. Torres. 2020. Alta presencia de cadmio resulta en baja diversidad de hongos formadores de micorrizas arbusculares asociados a cacao (Theobroma cacao L.). Acta Biol Colomb. 25(3): 333-344.
Schneider, J., J. Bundschuh and C.W.A. Nascimento. 2016. Arbuscular mycorrhizal fungi-assisted phytoremediation of a lead-contaminated site. Sci. Total Environ. 572: 86-97.
Silva, S., F.J. Rodrigues, E.U. Lima, V.U. Lima, J.S. Silva Teixeira, D.J. Palheta et al. 2020. Cadmium toxicity and phytoremediation in trees A review. Australian Journal of Crop Science 14(5): 857-870.
Tan, S.Y., Q.Y. Jiang, F. Zhuo, H. Liu, Y.T. Wang, S.S. Li, Z.H. Ye and Y.X Jing. 2015. Effect of inoculation with Glomus versiforme on cadmium accumulation, antioxidant activities and phytochelatins of Solanum photeinocarpum. PLoS One 10(7): e0132347.
Vallejos-Torres, G., R. Ruíz-Valles, CE. Chappa-Santa María, N. Gaona-Jiménez and C. Marín. 2022. High genetic diversity in arbuscular mycorrhizal fungi influence cadmium uptake and growth of cocoa plants. Bioagro 34(1): 75-84.
Vallejos-Torres, G., E. Espinoza, J. Marín-Díaz, R. Solis and L.A. Arévalo-López. 2021. The role of arbuscular mycorrhizal fungi against root-knot nematode infections in coffee plants. J. Soil Sci. Plant Nutr. 21: 364-373.
Van Aarle, I.M., P.A. Olsson and M.B. Soderstrom. 2002. Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytologist 155: 173-182.
Zhang, Y., X. Guo, X. Yan, M. Ren, C. Jiang Y. Cheng et al. 2018. Identification of stably expressed QTL for resistance to black shank disease in tobacco (Nicotiana tabacum L.) line Beinhart 1000-1. The Crop Journal 6(3): 282-290.
Zug, K.L.M., H.A. Huamaní-Yupanqui, F. Meyberg, J.S. Cierjacks and A. Cierjacks. 2019. Cadmium accumulation in peruvian cacao (Theobroma cacao L.) and Opportunities for Mitigation. Water Air Soil Pollut. 230: 72.
Publicado
Cómo citar
Número
Sección
Derechos de autor 2023 Geomar Vallejos-Torres, Nery Gaona-Jimenez, Alberto Alva Arevalo, Christopher Paredes, Andi Lozano, Jorge Saavedra-Ramírez, Luis A. Arévalo, Keneth Reátegui, Wilfredo Mendoza-Caballero, César Marín
Está obra está bajo licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Derechos del/de autor/es a partir del año de publicación
Esta obra está bajo la licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación ni de la UCLA. Se autoriza la reproducción total o parcial de los textos aquí publicados, siempre y cuando se cite la fuente completa y la dirección electrónica de esta revista. Los autores(as) tienen el derecho de utilizar sus artículos para cualquier propósito siempre y cuando se realice sin fines de lucro. Los autores(as) pueden publicar en internet o cualquier otro medio la versión final aprobada de su trabajo, luego que esta ha sido publicada en esta revista.
Bioagro se reserva el derecho de realizar modificaciones textuales y ajustes técnicos a las figuras de los manuscritos, de acuerdo con el estilo y especificaciones de la revista.