Un método efectivo y económico de extracción de ADN en la radícula embrionaria de semillas de guandú (Cajanus cajan) adecuado para análisis por PCR

Autores/as

DOI:

https://doi.org/10.51372/bioagro362.2

Palabras clave:

Amplificación por PCR, guandú, marcadores moleculares, método HotSHOT, rendimiento de ADN

Resumen

The presence of co-extracted impurities in seeds can make DNA extraction challenging, as these contaminants can interfere with PCR amplification, both of which, extraction and PCR, are important steps for ongoing breeding and selection programs. A new protocol is evaluated in this study as an alternative for extracting DNA from embryonic radicle tips of pigeonpea seeds that yield DNA readily amenable to PCR. The proposed protocol for DNA extraction in pigeonpea seeds shows great promise as an alternative method, as it is low-cost, straightforward, and effective for PCR amplification. It also has the advantage of not requiring hazardous or expensive reagents and can be easily scaled up, demonstrating its potential as a valuable resource for scientists studying pigeonpea genetics and breeding.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abebe, B. 2022. The dietary use of pigeon pea for human and animal diets. Scientific World Journal 2022: 4873008.

Aboul-Maaty, N.A. and H.A. Oraby. 2019. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre 43: 25.

Aydin, A., A.G. Ince, E. Uygur Gocer and M. Karaca. 2018. Single cotton seed dna extraction without the use of enzymes and liquid nitrogen. Fresenius Environmental Bulletin 27: 6722-6726.

Bates, D., J. Chambers and P. Dalgaard. 2023. The R Project for Statistical Computing. Available: http://www.r-project.org/. Retrieved: May 2023.

Bitencourt, J.V.T., P.A. Roratto, M.L. Bartholomei-Santos and S. Santos. 2007. Comparison of different methodologies for DNA extraction from Aegla longirostri. Brazilian Archives of Biology and Technology 50: 989-994.

Chen, Q., S. Wei, Z. Deng, L. Yin, B. He and X. Kong. 2009. Optimization of DNA extraction from seeds of Sorghum sudanense (Piper) Stapf. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 37(1): 256-260.

Choi, H.K., M.A. Luckow, J. Doyle and D.R. Cook. 2006. Development of nuclear gene derived molecular markers linked to legume genetic maps. Molecular Genetics and Genomics 276: 56-70.

Downie, S.R. and D.S. Katz-Downie. 1996. A molecular phylogeny of Apiaceae subfamily Apioideae: evidence from nuclear ribosomal DNA internal transcribed spacer sequences. American Journal of Botany 83: 234-251.

García-Abolafio, Y., F. Villanueva and M. Urrutia. 2023. Simple, fast and inexpensive hot sodium hydroxide and tris DNA extraction method for genotyping tomato and melon seeds. Biotechniques 75(6): 245-249.

Gowda, C.L., K.B. Saxena, R.K. Srivastava, H.D. Upadhyaya and S.N. Silim. 2012. Pigeonpea: from an orphan to a leader in food legumes. In: Gepts P., T.R. Famula, R.L. Bettinger et al. (eds.). Biodiversity in Agriculture: Domestication, Evolution, and Sustainability. Cambridge University Press, New York. pp. 362-373.

Hamilton, M.B. 1999. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology 8(3): 521-523.

Jafar, S., F. Kabir, K.M. Anjum, M.Y. Zahoor, W. Shehzad and M. Imran. 2023. Comparison of different DNA preparatory methods for development of a universal direct PCR-RFLP workflow for identification of meat origin in food products. Food Science and Technology 43: e65122.

Júnior, C.D.S., N.M.M. Teles, D.P. Luiz and T.F. Isabel. 2016. DNA Extraction from Seeds. In: Micic M. (ed). Sample Preparation Techniques for Soil, Plant, and Animal Samples. Springer Protocols Handbooks. Humana Press, New York. pp.265-276.

Kim, K.J. and R.K. Jansen. 1994. Comparison of phylogenetic hypotheses among different data sets in dwarf dandelions (Krigia: Asteraceae): additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Plant Systematics and Evolution 190: 157-185.

Kulkarni, K.P., R. Tayade, S. Asekova, J.T. Song, J.G. Shannon and J.D. Lee. 2018. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security. Frontiers in Plant Science. 9: 1314.

Kumar, S. 2011. Biotechnological advancements in alfalfa improvement. Journal of Applied Genetics 52: 111-124.

Olmstead, R.G., H.J. Michaels, K.M. Scott and J.D. Palmer. 1992. Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Annals of the Missouri Botanical Garden 79: 249-265.

Quintana, M., L. de-León, J. Cubero and F. Siverio. 2022. Assessment of Psyllid Handling and DNA extraction methods in the detection of ‘Candidatus Liberibacter Solanacearum’ by qPCR. Microorganisms, 10(6): 1104.

Rådström, P., R. Knutsson, P. Wolffs, M. Lövenklev and C. Löfström, 2004. Pre-PCR processing: strategies to generate PCR-compatible samples. Molecular Biotechnology 26(2): 133-146.

Sahu, S.K., M. Thangaraj and K. Kathiresan. 2012. DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. ISRN Molecular Biology 2012: 205049.

Sissi, C. and M. Palumbo. 2009. Effects of magnesium and related divalent metal ions in topoisomerase structure and function. Nucleic Acids Research 37(3): 702-711.

Ssekamatte, A.M.; F. Kato, C. Mukankusi, 2018. DNA extraction from silica gel-preserved common bean (Phaseolus vulgaris L.) leaves. African Journal of Biotechnology 17(49): 1383-1388.

Sudan, J., M. Raina, R. Singh, A. Mustafiz and S. Kumari. 2017. A modified protocol for high-quality DNA extraction from seeds rich in secondary compounds. Journal of Crop Improvement 31: 1-11.

Teoh, E.S. 2016. Secondary Metabolites of Plants. In Medicinal Orchids of Asia; Springer International Publishing: Cham, Switzerland. pp. 59-73.

Truett, G.E., P. Heeger, R.L. Mynatt, A.A. Truett, J.A. Walker and M.L. Warman. 2000. Preparation of PCR quality mouse genomic DNA with Hot Sodium Hydroxide and Tris (HotSHOT). Biotechniques 29: 52-54.

Tsugama, D., S. Liu and T. Takano. 2011. A rapid chemical method for lysing Arabidopsis cells for protein analysis. Plant Methods 7: 22.

Warner, P., A. Karakousis, A. Schiemann, J. Eglinton, P. Langridge and A. Barr. 2001. An investigation of a rapid DNA extraction method for routine MAS in the SA Barley Improvement Program. Proc of the 10th Australian Barley Technical Symposium. http://www.regional.org.au/au/abts/2001/t4/warner.htm (retrieved June 2023).

White, T.J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In M. Innis, D. Gelfand, J. Sninsky and T. White (eds). PCR protocols: a guide to methods and applications, Academic Press, San Diego, California. pp. 315–322.

Publicado

2024-05-01

Cómo citar

Ribeiro da Silva, G., Lisboa Guedes, F., & Mendonça Diniz, F. (2024). Un método efectivo y económico de extracción de ADN en la radícula embrionaria de semillas de guandú (Cajanus cajan) adecuado para análisis por PCR. Bioagro, 36(2), 143-154. https://doi.org/10.51372/bioagro362.2

Número

Sección

Artículos