Respuesta de Chenopodium ambrosioides L. al estrés por NaCl

Autores/as

DOI:

https://doi.org/10.51372/bioagro363.9

Palabras clave:

Epazote, tolerancia a NaCl, variables morfo-fisiológicas

Resumen

En las zonas áridas, el estrés por salinidad es uno de los estreses abióticos más predominantes que causan pérdidas significativas en la producción agrícola. El objetivo del estudio fue evaluar las características morfo-fisiológicas de Chenopodium ambrosioides L. para determinar su tolerancia al estrés por NaCl. El diseño fue completamente al azar con cinco concentraciones de NaCl (0, 50, 100, 150 y 200 mM) con cuatro repeticiones por tratamiento de 15 plantas cada uno. Las variables morfométricas evaluadas fueron peso seco de parte aérea, peso seco de raíz, área foliar, longitud de masa y longitud total de raíz. Las variables fisiológicas evaluadas fueron tasa fotosintética, conductancia estomática, CO2 intercelular, tasa de transpiración, contenido relativo de agua, potencial hídrico y temperatura de la hoja. Los resultados mostraron que C. ambrosioides es una planta que tolera hasta 100 mM de NaCl en relación con el peso seco de parte aérea, longitud de masa y total de raíz. En relación con las variables fisiológicas, mostró capacidad para tolerar hasta 50 mM NaCl pues el contenido relativo de agua, tasa fotosintética, conductancia estomática y CO2 intercelular, disminuyeron a partir de 50 mM NaCl, mientras que, la tasa de transpiración se redujo a partir de los 150 mM NaCl.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdelhamid, M.T., A. Sekara, M. Pessarakli, J.J. Alarcon, M. Brestic, H. El-Ramady et al 2020. New approaches for improving salt stress tolerance in rice. In: Rice Research for Quality Improvement: Genomics and Genetic Engineering; Roychoudhury, A., Ed.; Springer: Singapore.

Adolf, V.I., S. Shabala, M.N. Andersen, F. Razzaghi y S.E. Jacobsen. 2012. Varietal differences of quinoa’s tolerance to saline conditions. Plant and Soil 357(1-2): 117-129.

Adolf, V.I., S.E. Jacobsen y S. Shabala. 2013. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany 92: 43-54.

Aguilar-Carpio, C., S.V. González-Maza, P. Juárez-López, I. Alia-Tejacal, F. Palemón-Alberto, Y.R. Arenas-Julio y A.S. Escalante-Estrada. 2021. Análisis de crecimiento de epazote (Chenopodium ambrosioides L.) cultivado en invernadero. Biotecnia 23(2): 113-119.

Akyol, T.Y., O. Yilmaz, B. Uzİlday, R.Ö. Uzİlday y İ. Türkan. 2020. Plant response to salinity: An analysis of ROS formation, signaling, and antioxidant defense. Turkish Journal of Botany 44: 1-13.

Bech, J., C. Poschenrieder, J. Barceló y A. Lansac. 2002. Plants from mine spoils in the South American area as potential sources of germplasm for phytoremediation technologies. Acta Biotechnologica 22(1-2): 5-11.

Cárdenas-Pérez, S., A. Piernik, A. Ludwiczak, M. Duszyn, A. Szmidt-Jaworska y J.J. Chanona-Pérez. 2020. Image and fractal analysis as a tool for evaluating salinity growth response between two Salicornia europaea populations. BMC Plant Biology 20:467.

Chaudhry, S. y G.P.S. Sidhu. 2022. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Report 41: 1-31.

Chen, B., J. Zhou, X. Gou, D.W. Ma, Y.N. Wang, Z.L. Hu y Y.Q. He. 2016. Volatiles from Chenopodium ambrosioides L. induce the oxidative damage in maize (Zea mays L.) radicles. Allelopath Journal 38: 171-181.

Chen, B., Y.N. Wang, D.W. Ma, Z.L. Hu, Y.Q. He y J. Zhou. 2015. Allelopathic effects of Chenopodium ambrosioides L. on antioxidant enzyme activity and gene expression in maize root. Ecology and Environmental Sciences 24: 1640-1646.

Cruz-Falcón, A., J.M. Murillo-Jiménez y H.C. Fraga-Palomino. 2023. Evolución de la intrusión marina y relaciones iónicas en el acuífero de La Paz BCS, México. Terra Latinoamericana 41:1-16. e1636.

García, E. 2004. Modificaciones al Sistema de Clasificación Climática de Köppen. Instituto de Geografía. Universidad Nacional Autónoma de México, México, D.F. 74 p.

Goto, K., S. Yabuta, P. Ssenyonga, S. Tamaru y J.I. Sakagami. 2021. Response of leaf water potential, stomatal conductance and chlorophyll content under different levels of soil water, air vapor pressure deficit and solar radiation in chili pepper (Capsicum chinense). Scientia Horticulturae 281: 109943,

Hameed, A., M.Z. Ahmed, T. Hussain, I. Aziz, N. Ahmad, B. Gul y B.L. Nielsen. 2021. Effects of salinity stress on chloroplast structure and function. Cells 10(8).

Hu, Z.L., Y.N. Wang, D.W. Ma, B. Chen, Y.Q. He y J. Zhou. 2015. The alleviate effect of extracellular DNA and protein in maize root border cells on the allelochemical stress from Chenopodium ambrosioides L. Scientia Agricultura Sinica 48: 1962-1970.

Kotula, L., P. García Caparros, C. Zörb, T.D. Colmer y T.J. Flowers. 2020. Improving crop salt tolerance using transgenic approaches: An update and physiological analysis. Plant Cell and Environment. 43: 2932-2956.

Ilangumaran, G. y D.L. Smith. 2017. Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. Frontiers in Plant Science 8: 1768.

Kasali, F.M., J. Tusiimire, J.N. Kadima y Amon Ganafa Agaba. 2021. Ethnomedical uses, chemical constituents, and evidence-based pharmacological properties of Chenopodium ambrosioides L.: extensive overview. Future Journal of Pharmaceutical Sciences 7: 153.

Ma, Y., M.C. Dias y H. Freitas. 2020. Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science 11: 591911.

Meguekam, T.L., D.P. Moualeu, V.D. Taffouo y H. Stützel. 2021. Changes in plant growth, leaf relative water content and physiological traits in response to salt stress in peanut (Arachis hypogaea L.) varieties. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49(1): 12049.

Muhammad, I., A. Shalmani, M. Ali, Q.H. Yang, H. Ahmad y F.B. Li. 2021. Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Frontiers in Plant Science 11: 615942.

Oliveira-Tintino, C.D.M., S.R. Tintino, P.W. Limaverde, F.G. Figueredo, F.F. Campina, F.A.B. Da Cunha et al. 2018. Inhibition of the essential oil from Chenopodium ambrosioides L. and α-terpinene on the NorA efflux-pump of Staphylococcus aureus. Food Chemistry 262: 72-77.

Parvin, S., A. Reza, S. Das, M.M.U. Miah y S. Karim. 2023. Potential role and international trade of medicinal and aromatic plants in the world. European Journal of Agriculture and Food Sciences 5(5):89-99.

Rosales-Nieblas, A., F. Ruiz-Espinoza, B. Murillo-Amador, S. Zamora-Salgado, F. Beltrán Morales y J. Loya Ramírez. 2019. Contenido de clorofila a y b en plantas de epazote (Chenopodium ambrosioides L.) sometidas a concentraciones de cloruro de sodio en hidroponía. Compendio Científico en Ciencias Agrícolas y Biotecnología 2: 117-121.

Samperio, R.G. 1997. Hidroponía Básica. Editorial Diana. México, D.F. 176 p.

Sangoquiza-Caiza, C.A., Y. Viera-Tamayo, CF. Yánez-Guzmán y J.L. Zambrano-Mendoza. 2021. Efecto del estrés salino sobre el crecimiento de plántulas de maíz variedad “Tayuyo” en condiciones in vitro. Centro Agrícola 48(2): 14-23.

Santiago-Sáenz, Y.O., A.D. Hernández-Fuentes, C.U. López-Palestina, J.H. Garrido-Cauich, J.M. Alatorre-Cruz y R. Monroy-Torres. 2019. Importancia nutricional y actividad biológica de los compuestos bioactivos de quelites consumidos en México. Revista Chilena de Nutrición 46(5): 593-605.

Sarabi, B., C. Fresneau, N. Ghaderi, S. Bolandnazar, P. Streb, F.W. Badeck et al. 2019. Stomatal and non-stomatal limitations are responsible in down-regulation of photosynthesis in melon plants grown under the saline condition: Application of carbon isotope discrimination as a reliable proxy. Plant Physiology and Biochemistry 141:1-19.

Shabala, L., A. Mackay, Y. Tian, S.E. Jacobsen, D. Zhou y S. Shabala. 2012. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa Willd.). Physiologia Plantarum 146(1): 26-38.

Shahid, M.A., A. Sarkhosh, N. Khan, R.M. Balal, S. Ali, L. Rossi, C. Gómez, N. Mattson, W. Nasim and F. Garcia-Sanchez. 2020. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 10:938.

SIAP. Sistema de Información Agropecuaria. 2023. Sistema de Información Agropecuaria de Consulta. SAGARPA. México. http://www.nube.siap.gob.mx/cierreagricola/

Tanveer, M. y A.N. Shah. 2017. An insight into salt stress tolerance mechanisms of Chenopodium album. Environmental Science and Pollution Research 24: 16531-16535.

Terrazas-Rueda, J.M. 2019. Aprovecha-miento del suelo salino: agricultura salina y recuperación de suelos. Apthapi 5(1): 1539-1563.

Ungar, I.A. 1995. Seed germination and seed-bank ecology in halophytes. In: Kigel J. and Galili G. (Eds): Seed development and germination, 599-628. Marcel Dekker Inc. New York.

Yamasaki, S. y L.R. Dillenburg. 1999. Measurement of leaf relative water content in Araucaria angustifolia. Revista Brasileira de Fisiología Vegetal 11: 69-75.

Yang, Z., J.L. Li, L.N. Liu, Q. Xie y N. Sui. 2020. Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Frontiers in Plant Science 10:1722.

Zavala, R., J. Herrera, A.S. Lara y V.D.L. Garzón-Cortés. 2016. Evaluación de la toxicidad aguda de un extracto alcohólico de hojas de epazote (Chenopodium ambrosioides). Spei Domus 12(24).

Zhang, Y., E. Kaiser, Y. Zhang, Q. Yang y T. Li. 2018. Short-term salt stress strongly affects dynamic photosynthesis, but not steady-state photosynthesis, in tomato (Solanum lycopersicum). Environmental and Experimental Botany 149: 109-119.

Publicado

2024-09-01

Cómo citar

Rosales Nieblas, A. C., Ruiz Espinoza, F. H., Murillo-Amador, B., Preciado Rangel, P., Hernández-Montiel, L. G., & Rivas García, T. (2024). Respuesta de Chenopodium ambrosioides L. al estrés por NaCl. Bioagro, 36(3), 347-358. https://doi.org/10.51372/bioagro363.9